Ni(II) and Co(II) Sensing by Escherichia coli RcnR
2008; American Chemical Society; Volume: 130; Issue: 24 Linguagem: Inglês
10.1021/ja710067d
ISSN1943-2984
AutoresJeffrey S. Iwig, Sharon Leitch, Robert W. Herbst, Michael J. Maroney, Peter T. Chivers,
Tópico(s)Antibiotic Resistance in Bacteria
ResumoEscherichia coli RcnR and Mycobacterium tuberculosis CsoR are the founding members of a recently identified, large family of bacterial metal-responsive DNA-binding proteins. RcnR controls the expression of the metal efflux protein RcnA only in response to Ni(II) and Co(II) ions. Here, the interaction of Ni(II) and Co(II) with wild-type and mutant RcnR proteins is examined to understand how these metals function as allosteric effectors. Both metals bind to RcnR with nanomolar affinity and stabilize the protein to denaturation. X-ray absorption and electron paramagnetic resonance spectroscopies reveal six-coordinate high-spin sites for each metal that contains a thiolate ligand. Experimental data support a tripartite N-terminal coordination motif (NH2-Xaa-NH-His) that is common for both metals. However, the Ni(II)− and Co(II)−RcnR complexes are shown to differ in the remaining coordination environment. Each metal coordinates a conserved Cys ligand but with distinct M−S distances. Co(II)−thiolate coordination has not been observed previously in Ni(II)-/Co(II)-responsive metalloregulators. The ability of RcnR to recruit ligands from the N-terminal region of the protein distinguishes it from CsoR, which uses a lower coordination geometry to bind Cu(I). These studies facilitate comparisons between Ni(II)−RcnR and NikR, the other Ni(II)-responsive transcriptional regulator in E. coli, to provide a better understanding how different nickel levels are sensed in E. coli. The characterization of the Ni(II)- and Co(II)-binding sites in RcnR, in combination with bioinformatics analysis of all RcnR/CsoR family members, identified a four amino acid fingerprint that likely defines ligand-binding specificity, leading to an emerging picture of the similarities and differences between different classes of RcnR/CsoR proteins.
Referência(s)