
Points to Consider in the Development of Seed Stocks of Pluripotent Stem Cells for Clinical Applications: International Stem Cell Banking Initiative (ISCBI)
2015; Future Medicine; Volume: 10; Issue: sup2 Linguagem: Inglês
10.2217/rme.14.93
ISSN1746-076X
AutoresPeter W. Andrews, Duncan Baker, N Benvinisty, B Miranda, K. Bruce, O Br... x FC stle, Myeong-Jun Choi, Y-M Choi, Jeremy M. Crook, Paul A. De Sousa, Petr Dvořák, Christian Freund, Meri T. Firpo, Miho Furue, Paul J. Gokhale, H-Y Ha, Enna Han, Simone Haupt, Lyn Healy, DJ Hei, Outi Hovatta, Charles J. Hunt, S-M Hwang, Maneesha S. Inamdar, RM Isasi, Marisa Jaconi, Veronika Jekerle, P Kamthorn, M. C. Kibbey, Ivana Knežević, Barbara B. Knowles, S-K Koo, Yacine Laâbi, L Leopoldo, P. Liu, GP Lomax, JF Loring, TE Ludwig, Karen Dyer Montgomery, Christine L. Mummery, András Nagy, Yukio Nakamura, Norio Nakatsuji, Steve Oh, S-K Oh, Timo Otonkoski, Martín F. Pera, Marc Peschanski, Patrícia Pranke, KM Rajala, Rao Ms, R Ruttachuk, Benjamin Reubinoff, L. Ricco, Heather M. Rooke, Douglas Sipp, GN Stacey, Hirofumi Suemori, TA Takahashi, Kei Takada, Sohel Talib, Shelly E. Tannenbaum, B-Z Yuan, Fanyi Zeng, Qi Zhou,
Tópico(s)Renal and related cancers
ResumoRegenerative MedicineVol. 10, No. 2s SupplementPoints to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI)PW Andrews, D Baker, N Benvinisty, B Miranda, K Bruce, O Brüstle, M Choi, Y-M Choi, JM Crook, PA de Sousa, P Dvorak, C Freund, M Firpo, MK Furue, P Gokhale, H-Y Ha, E Han, S Haupt, L Healy, DJ Hei, O Hovatta, C Hunt, S-M Hwang, MS Inamdar, RM Isasi, M Jaconi, V Jekerle, P Kamthorn, MC Kibbey, I Knezevic, BB Knowles, S-K Koo, Y Laabi, L Leopoldo, P Liu, GP Lomax, JF Loring, TE Ludwig, K Montgomery, C Mummery, A Nagy, Y Nakamura, N Nakatsuji, S Oh, S-K Oh, T Otonkoski, M Pera, M Peschanski, P Pranke, KM Rajala, M Rao, R Ruttachuk, B Reubinoff, L Ricco, H Rooke, D Sipp, GN Stacey, H Suemori, TA Takahashi, K Takada, S Talib, S Tannenbaum, B-Z Yuan, F Zeng, Q ZhouPW AndrewsDepartment of Biomedical Science, The University of Sheffield, Sheffield, UK, D BakerSheffield Diagnostic Genetic Services (National Health Se rvice) / Centre for Stem Cell Biology (University of Sheffield), UK, N BenvinistyStem Cell Unit, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel, B MirandaBiobank Andalousian Public Health System, Spain, K BruceRoslin Cells Ltd, Scottish Centre for Regenerative Medicine, UK, O BrüstleInstitute of Reconstructive Neurobiology, University of Bonn; German Centre for Neurodegenerative Diseases, Bonn, Germany, M ChoiMinistry of Food and Drugs Safety (MFDS) (KFDA), Oosong, Republic of Korea, Y-M ChoiInstitute of Reproductive Medicine & Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea, JM CrookSynthetic Biosystems Laboratory, ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Department of Surgery – St Vincent's Hospital, The University of Melbourne, Fitzroy, Australia, PA de SousaCentre for Clinical Brain Sciences, University of Edinburgh; Roslin Cells Ltd, Edinburgh, UK, P DvorakDepartment of Biology, Faculty of Medicine, Masaryk University, Czech Republic, C FreundDepartment of Anatomy and Embryology, Leiden University Medical Centre, The Netherlands, M FirpoStem Cell Institute, Department of Medicine, Division of Endocrinology, University of Minnesota, USA, MK FurueNational Institute of Biomedical Innovation, Japan, P GokhaleDepartment of Biomedical Science, The University of Sheffield, Sheffield, UK, H-Y HaKorea National Institute for Health (KNIH)l, Republic of Korea, E HanMinistry of Food and Drugs Safety (MFDS) (KFDA), Oosong, Republic of Korea, S HauptLIFE & BRAIN GmbH, Bonn, Germany, L HealyUK Stem Cell Bank, Division of Advanced Therapies, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK: Division of Cell Biology & Imaging, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK. , DJ HeiWaisman Center, University of Wisconsin, Madison, USA, O HovattaKarolinska Institutet, Sweden, C HuntUK Stem Cell Bank, Division of Advanced Therapies, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK: Division of Cell Biology & Imaging, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK. , S-M HwangBioresource Collection and Research Center, Hinchu, Taiwan, MS InamdarMolecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India, RM IsasiCentre of Genomics and Policy, McGill University and Génome Québec Innovation Centre, Canada, M JaconiDepartment of Plastic, Reconstructive and Aesthetic Surgery, University Hospitals of Geneva (HUG) , Faculty of Medicine, Geneva University, Switzerland, V JekerleEuropean Medicines Agency, London, UK, P KamthornFaculty of Veterinary Science, Chulalogcorn University, Thailand, MC KibbeyUnited States Pharmacopeia, Bethesda, USA, I KnezevicWorld Health Organisation, Geneva, Switzerland, BB KnowlesThe Jackson Laboratory, Bar Harbor, Maine, USA and the Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand, S-K KooKorea National Institute for Health (KNIH)l, Republic of Korea, Y LaabiI-Stem AFM Inserm Évry., France, L LeopoldoAndalousian Initiative Advanced Therapies (IATA), Spain, P LiuWellcome Trust Sanger Institute, Cambridge, UK, GP LomaxCalifornia Institute for Regenerative Medicine, San Francisco, USA, JF LoringCenter for Regenerative Medicine, The Scripps Research Institute, La Jolla, California, USA, TE LudwigWiCell Research Institute, Wisconsin, USA, K MontgomeryWiCell Research Institute, Wisconsin, USA, C MummeryDepartment of Anatomy and Embryology, Leiden University Medical Centre, The Netherlands, A NagyCentre for Stem Cells and Tissue Engineering, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Canada, Y NakamuraCell Engineering Division, RIKEN BioResource Center, Tsukuba, Japan, N NakatsujiInstitute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Japan, S OhStem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, S-K OhInstitute of Reproductive Medicine & Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea, T OtonkoskiResearch Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, University of Helsinki, Helsinki, Finland, M PeraFlorey Neuroscience and Mental Health Institute, and Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Australia, M PeschanskiI-Stem AFM Inserm Évry., France, P PrankeHematology and Stem Cell Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil, KM RajalaHeart group, BioMediTech, University of Tampere, Tampere, Finland, M RaoRegenerative Medicine, New York Stem Cell Foundation, USA, R RuttachukFaculty of Veterinary Science, Chulalogcorn University, Thailand, B ReubinoffGoldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel, L RiccoAndalousian Initiative Advanced Therapies (IATA), Spain, H RookeInternational Society for Stem Cell Research, USA, D SippRIKEN Center for Developmental Biology, Japan, GN Stacey* Author for correspondenceUK Stem Cell Bank, Division of Advanced Therapies, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK: Division of Cell Biology & Imaging, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK. , H SuemoriDepartment of Embryonic Stem Cell Research, The Institute of Frontier Medical Sciences, Kyoto University, Japan, TA TakahashiDepartment of Embryonic Stem Cell Research, The Institute of Frontier Medical Sciences, Kyoto University, Japan, K TakadaDepartment of Embryonic Stem Cell Research, The Institute of Frontier Medical Sciences, Kyoto University, Japan, S TalibCalifornia Institute for Regenerative Medicine, San Francisco, USA, S TannenbaumGoldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel, B-Z YuanNational Institutes for Food and Drug Control, Beijing, China, F ZengShanghai Institute of Medical Genetics and Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, China, Q ZhouState key laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, ChinaPublished Online:12 Feb 2015https://doi.org/10.2217/rme.14.93AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleReferences1 ISCBI. International Stem Cell Initiative. Andrews P, Arias-Diaz J, Auerbach J et al. Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes. Stem Cell Reviews and Reports2009, 5, 301–314 (2009).Google Scholar2 PAS 84. Cell Therapy and Regenerative Medicine Glossary. Regenerative Medicine7(3, Suppl. 1) (2012). http://shop.bsigroup.com/Browse-by-Sector/Healthcare/PAS-84Google Scholar3 World Health Organization. Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks. WHO Technical Report Series 978, Annex 3 (2010). Replacement of WHO Technical Report Series, No. 878, Annex 1. www.who.int/biologicals/vaccines/TRS_978_Annex_3.pdfGoogle Scholar4 Isasi R, Knoppers B. Monetary payments for the procurement of oocytes for stem cell research: in search of ethical and political consistency. Stem Cell Research1,37–44 (2007).Crossref, Medline, Google Scholar5 Isasi R, Knoppers B, Andrews P et al. International Stem Cell Forum Ethics Working Party. Disclosure and Management of Research Findings in Stem Cell Research and Banking: Policy Statement by the ISCF-EWP. Regen. Med.7(3),439–448 (2012).Link, CAS, Google Scholar6 ISSCR (2006). International Society for Stem Cell Research (ISSCR) Guidelines for the Conduct of Human Embryonic Stem Cell Research (December 2006). Dickens BM. Med Law27(1),179–190 (2008).Medline, Google Scholar7 ISCF EWP. International Stem Cell Forum Ethics Working Party. Knoppers BM, Andrews PW, Bredenoord A et al. Ethics issues in stem cell research. Science312(5772),366–367 (2006).Crossref, Medline, Google Scholar8 Murdoch A, Braude P, Stacey G et al. The Procurement Working Group of the National Clinical hESC Forum. The Procurement of cells for the derivation of human embryonic stem cell lines for therapeutic use: recommendations for good practice. Stem Cell Rev. Reports8(1),91–99 (2011).Crossref, Google Scholar9 Advisory Committee on the Safety of Blood, Tissues and Organs (SaBTO). Donation of starting material for cell-based advanced therapies: a SaBTO review, Department of Health, UK (2014).Google Scholar10 Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. Identifying personal genomes by surname inference. Science339(6117),321–324 (2013).Crossref, Medline, CAS, Google Scholar11 Isasi R, Andrews P, Baltz J et al. Identifiability and privacy in pluripotent stem cell research. Cell Stem Cell14(4),427–30 (2014).Crossref, Medline, CAS, Google Scholar12 Lomax G, Hull S, Lowenthal J, Rao M, Isasi R. The DISCUSS Project: induced pluripotent stem cell lines from previously collected research biospecimens and informed consent: points to consider. Stem Cells Trans. Med.2(10) (2013).Crossref, Medline, Google Scholar13 ICH Q5D Derivation and Characterization of cell substrates used for production of biotechnological/biological products (1997). www.ich.org/products/guidelines/quality/quality-single/article/derivation-and-characterisation-of-cell-substrates-used-for-production-of-biotechnologicalbiologica.htmlGoogle Scholar14 Malone JH, Oliver B. Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol.9,34 (2011).Crossref, Medline, CAS, Google Scholar15 Lui L, Li Y, Li S et al. Comparison of next generation sequencing systems. J. Biomed. Biotechnol.251364 (2012).Medline, Google Scholar16 Frese K, Katus, H, Meder B. Next-generation sequencing: from understanding biology to personalized medicine. Biology2,378–398 (2013).Crossref, Medline, Google Scholar17 Victoria J, Wang C, Jones M et al. Viral nucleic acids in live-attenuated vaccines: detection of minority variants and an adventitious virus. J. Virol.84(12),6033–40 (2010).Crossref, Medline, CAS, Google Scholar18 Gilliland S, Forrest L, Carre H et al. Investigation of porcine circovirus contamination in human vaccines. Biologicals40(4),270–277 (2012).Crossref, Medline, CAS, Google Scholar19 World Health Organisation. Community genetics services: report of a WHO consultation on community genetics in low- and middle-income countries. (2011).Google Scholar20 Brazma A. On the importance of standardization in life sciences. Bioinformatics17(2),113–114 (2001).Crossref, Medline, CAS, Google Scholar21 World Health Organization. WHO Guidelines on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies. WHO, Geneva (2010). www.who.int/bloodproducts/tablestissueinfectivity.pdfGoogle Scholar22 EMA. CHMP/CAT position statement on Creutzfeldt–Jakob disease and advanced therapy medicinal products. Committee for Medicinal Products for Human Use (CHMP) and Committee for Advanced Therapies (CAT). London, UK (2011).Google Scholar23 EMA. Note for guidance on minimising the risk of transmitting animal spongiform encephalopathy agents via human and veterinary medicinal products (EMA/410/01 rev.3). Official Journal of The European Union. (2011). 2011/C 73/01.Google Scholar24 Young L, Sung J, Stacey G, Masters J. Detection of mycoplasma in cell cultures. Nat. Protoc.5(5),929–934 (2010).Crossref, Medline, CAS, Google Scholar25 Volokhov D, Graham L, Brorson K, Chizhikov V. Mycoplasma testing of cell substrates and biologics: review of alternative non-microbiological techniques. Mol. Cell Probes.25(2–3),69–77 (2011).Crossref, Medline, CAS, Google Scholar26 Martins-Taylor K, Xu R-H. Concise review: genomic stability of human induced pluripotent stem cells. Stem Cells30,22–27 (2012).Crossref, Medline, CAS, Google Scholar27 Nguyen H, Geens M, Spits C. Genetic and epigenetic instability in human pluripotent stem cells. Human Reproduction Update19,187–205 (2013).Crossref, Medline, CAS, Google Scholar28 Ben-David U, Arad G, Weissbein U et al. Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat. Commun.5,4825 (2014).Crossref, Medline, CAS, Google Scholar29 Lund J, Emani M, Barbaric I et al. Karyotypically abnormal ESCs are sensitive to HDAC inhibitors and show altered regulation of genes linked to cancers and neurological diseases. Stem Cell Res.11,1022–1036 (2013).Crossref, Medline, CAS, Google Scholar30 Sun Y, Yang Y, Zeng S, Tan Y, Lu G, Lin G. Identification of proteins related to epigenetic regulation in the malignant transformation of aberrant karyotypic human embryonic stem cells by quantitative proteomics. PLoS One2014, 9,e85823.Crossref, Medline, Google Scholar31 Chen Z, Zhao T, Xu Y. The genomic stability of induced pluripotent stem cells. Protein Cell3(4),271–277 (2012).Crossref, Medline, Google Scholar32 Hyka-Nouspikel N, Desmarais J, Gokhale PJ et al. Deficient DNA damage response and cell cycle checkpoints lead to accumulation of point mutations in human embryonic stem cells. Stem Cells30(9),1901–1910 (2012).Crossref, Medline, CAS, Google Scholar33 ISCI. International Stem Cell Initiative. Amps K, Andrews P, Anyfantis G et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat. Biotechnol.29(12),1132–1144 (2011).Crossref, Medline, Google Scholar34 Laurent LC, Ulitsky I, Slavin I et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and hiPSCs during reprogramming and time in culture. Cell Stem Cell8(1),106–118 (2011).Crossref, Medline, CAS, Google Scholar35 Steinemann D, Göhring G, Schlegelberger B. Genetic instability of modified stem cells – a first step towards malignant transformation? Am. J. Stem Cells2(1),39–51 (2013).Medline, CAS, Google Scholar36 Yang S, Lin G, Tan Y, Deng L, Yuan D, Lu G. Differences between karyotypically normal and abnormal human embryonic stem cells. Cell Prolif.43(3),195–206 (2010).Crossref, Medline, CAS, Google Scholar37 Gore A, Li Z, Fung HL, Young JE et al. Somatic coding mutations in human induced pluripotent stem cells. Nature471(7336),63–67 (2011).Crossref, Medline, CAS, Google Scholar38 Sugiura M, Kasama Y, Araki R et al. Induced pluripotent stem cell generation-associated point mutations arise during the initial stages of the conversion of these cells. Stem Cell Reports2,52–63 (2014).Crossref, Medline, CAS, Google Scholar39 Avery S, Hirst A, Baker D et al. BCL-XL mediates the strong selective advantage of a 20q11.21 amplification commonly found in human embryonic stem cell cultures. Stem Cell Reports1,379–386 (2013).Crossref, Medline, CAS, Google Scholar40 Närvä E, Autio R, Rahkonen N et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. 28,371–377 (2010).Crossref, Google Scholar41 Chen KG, Mallon BS, McKay RDG, Robey PG. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell14,13–26 (2014).Crossref, Medline, CAS, Google Scholar42 Anguiano A, Wang B, Wang S et al. Spectral Karyotyping for identification of constitutional chromosomal abnormalities at a national reference laboratory. Mol. Cytogenet.5,3 (2012)Crossref, Medline, Google Scholar43 Das K, Tan P. Molecular cytogenetics: recent developments and applications in cancer. Clin. Gen.84,315–325(2013).Crossref, Medline, CAS, Google Scholar44 Moralli D, Yusuf M, Mandegar MA, Khoja S, Monaco ZL, Volpi EV. An improved technique for chromosomal analysis of human ES and iPS cells. Stem Cell Rev. Reports7,471–477 (2011).Crossref, Medline, Google Scholar45 Peterson SE, Westra JW, Rehen SK et al. Normal human pluripotent stem cell lines exhibit pervasive mosaic aneuploidy. PLoS One6,e23018 (2011).Crossref, Medline, CAS, Google Scholar46 Riegel M. Human molecular cytogenetics: from cells to nucleotides. Genetics Mol. Biol.37,194–209 (2014).Crossref, Medline, Google Scholar47 Ben-David U, Mayshar Y, Benvenisty N. Vurtual karyotyping of pluripotent stem cells on the basis of their global gene expression profiles. Nat. Protocols8,989–997 (2013)Crossref, Medline, Google Scholar48 Zhang F, Gu W, Hurles M, Lupski J. Copy number variation in human health, disease and evolution. Ann. Rev. Hum. Genet.10,451–481 (2009).Crossref, Medline, CAS, Google Scholar49 Liang G, Zhange Y. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res.23,49–69 (2013).Crossref, Medline, CAS, Google Scholar50 Liang G and Zhange Y. Genetic and epigenetic variations in iPSCs: potential consequences and implications for application. Cell Stem Cell13,149–159 (2013).Crossref, Medline, CAS, Google Scholar51 Frost J, Monk D, Moschidou D, Guillot PV, Stanier P, Minger SL, Fisk NM, Moore HD, Moore GE. The effects of culture on genomic imprinting profiles in human embryonic and fetal mesenchymal stem cells. Epigenetics6(1),52–62 (2011).Crossref, Medline, CAS, Google Scholar52 Nazor KL, Altun G, Lynch C et al. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell10(5),620–634 (2012).Crossref, Medline, CAS, Google Scholar53 Tompkins J, Hall C, Chen V et al. Epigenetic stability, adaptability, and reversibility in human embryonic stem cells. Proc. Natl Acad. Sci. USA109(31),12544–12549 (2012).Crossref, Medline, CAS, Google Scholar54 Association for Clinical Cytogenetics: Professional Guidelines for Clinical Cytogenetics Constitutional Postnatal Chromosomal Microarray Best Practice Guidelines. Volume 2 (2011).Google Scholar55 Gropp M, Shilo V, Vainer G et al. Standardization of the teratoma assay for analysis of pluripotency of human ES cells and biosafety of their differentiated progeny. PLoS One7(9),e45532 doi:10.1371/journal.pone.0045532 (2012).Crossref, Medline, CAS, Google Scholar56 Buta C, David R, Dressel R et al. Reconsidering pluripotency tests: do we still need teratoma assays? Stem Cell Res.11(3),1022–1036 (2013).Crossref, Medline, Google Scholar57 Aleckovic M, Simón C. Is teratoma formation in stem cell research a characterization tool or a window to developmental biology? Reprod. Biomed. Online17,270–280 (2008).Crossref, Medline, Google Scholar58 Prokhorova TA, Harkness LM, Frandsen U et al. Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev.18(1),47–54 (2009).Crossref, Medline, CAS, Google Scholar59 Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumor formation by single human melanoma cells. Nature456,593–598 (2008).Crossref, Google Scholar60 Ito M, Hiramatsu H, Kobayashi K et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood100,3175–3182 (2002).Crossref, Medline, CAS, Google Scholar61 Kanemura H, Go MJ, Shikamura M et al. Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS One14,e85336 (2014).Crossref, Google Scholar62 Shultz LD, Lyons BL, Burzenski LM. Human lymphoid and myeloid development in NOD/LtSz-scid ILR2 gamma null mice engrafted with mobilised human hemopoetic stem cells. J. Immunol.174,6477–6489 (2005).Crossref, Medline, CAS, Google Scholar63 Coecke S, Balls M, Bowe G et al. Guidance on Good Cell Culture Practice. A report of the second ECVAM Task Force on Good Cell Culture Practice, ATLA, 2005, 33, 1–27.Google Scholar64 Andrews P. From teratocarcinomas to embryonic stem cells. Philos. Trans. R Soc. Lond. B Biol. Sci.357(1420),405–17 (2002).Crossref, Medline, Google Scholar65 Solter D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat. Rev. Genet.7(4),319–27 (2006).Crossref, Medline, CAS, Google Scholar66 Croce CM. Oncogenes and cancer. N. Engl. J. Med.358,502–511 (2008).Crossref, Medline, CAS, Google Scholar67 Kerrigan L,Nims RW. Authentication of human cell-based products: the role of a new consensus standard. Regen. Med.6(2),255–260 (2011).Link, Google Scholar68 Knoppers BM, Isasi R, Benvenisty N et al. Publishing SNP genotypes of human embryonic stem cell lines: policy statement of the International Stem Cell Forum Ethics Working Party. Stem Cell Rev.7(3),482–4 (2001).Crossref, Google Scholar69 Luong MX, Auerbach J, Crook JM et al. A call for standardized naming and reporting of human ESC and iPSC lines. Cell Stem Cell8(4),357–359.Crossref, Medline, Google Scholar70 O'Connor MD, Kardel MD, Iosfina I et al. Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells26,1109–1116 (2008).Crossref, Medline, Google Scholar71 Calloni R, Cordero EA, Henriques JA, Bonatto D. Reviewing and updating the major molecular markers for stem cells. Stem Cells Dev.22,1455–1476 (2013).Crossref, Medline, CAS, Google Scholar72 Zhao W, Ji X, Zhang F, Li L, Ma L. Embryonic stem cell markers. Molecules17,6196–6236 (2012).Crossref, Medline, CAS, Google Scholar73 ISCI. International Stem Cell Initiative. Adewumi O, Aflatoonian B, Ahrlund-Richter L et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol.25,803–816 (2007).Crossref, Medline, CAS, Google Scholar74 Josephson R, Ording CJ, Liu Y et al. Qualification of embryonal carcinoma 2102Ep as a reference for human embryonic stem cell research. Stem Cells25,437–446 (2007).Crossref, Medline, CAS, Google Scholar75 Loring JF, Rao MS. Establishing standards for the characterization of human embryonic stem cell lines. Stem Cells24(1),145–50 (2006).Crossref, Medline, Google Scholar76 Durruthy-Durruthy J, Briggs S, Awe J et al. Rapid and efficient conversion of integration-free human induced pluripotent stem cells to GMP-grade culture conditions. PLoS One204, 9, e94231.Google Scholar77 Goh PA, Caxaria S, Casper C, Rosales C, Warner TT, Coffey PJ, Nathwani AC. A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells. PLoS One8(11),e81622 (2013).Crossref, Medline, Google Scholar78 Müller FJ, Goldmann J, Löser P, Loring JF. A call to standardize teratoma assays used to define human pluripotent cell lines. Cell Stem Cell6,412–414 (2010).Crossref, Medline, Google Scholar79 Müller FJ, Schuldt BM, Williams R et al. A bioinformatic assay for pluripotency in human cells. Nat. Methods8(4),315–317 (2001).Crossref, Google Scholar80 Müller FJ, Brändl B, Loring JF. Assessment of human pluripotent stem cells with PluriTest. StemBook [Internet]. Cambridge (MA, USA), Harvard Stem Cell Institute, 2008–2012.Google Scholar81 Bock, C, Kiskinis E, Verstappen G et al. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell144(3),439–52 (2001).Crossref, Google Scholar82 Sheridan SD, Surampudi V, Rao RR. Analysis of embryoid bodies derived from human induced pluripotent stem cells as a means to assess pluripotency. Stem Cells Int.738910 (2012).Medline, Google Scholar83 US FDA. Guidance for Industry: Current Good Tissue Practice (CGTP) and Additional Requirements for Manufacturers of Human Cells, Tissues and Cellular and Tissue-Based Products (HCT/Ps). (2011)Google Scholar84 EudraLex. EudraLex Volume 4, Chapter 1 (2011). http://ec.europa.eu/health/files/eudralex/vol-4/pdfs-en/2008_02_14_gmp-part1-chapter1_q9_en.pdfGoogle Scholar85 MHRA. Rules and Guidance for Pharmaceutical manufacturers and Distributors. 2014. http://www.mhra.gov.uk/Publications/Regulatoryguidance/Medicines/CON2030291Google Scholar86 World Health Organization (2006). Annex 4 Supplementary guidelines on GMPs: validation, WHO Technical Report Series, No. 937, (2006). http://apps.who.int/prequal/info_general/documents/TRS937/WHO_TRS_937-Annex4.pdfGoogle Scholar87 World Health Organisation (2007). Quality assurance of pharmaceuticals: A compendium of guidelines and related materials, Volume 2, 2nd Updated Edition, Good Manufacturing Practices And Inspection. (2007). www.who.int/vaccines-documents/DocsPDF/www9666.pdfGoogle Scholar88 EUTCD (2004). Directive 2004/23/EC of the European Parliament and of the Council of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells. (2004). http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32004L0023Google Scholar89 Beck G, Schenerman M, Dougherty J et al. Raw material control strategies for bioprocesses. BioProcess International18–33 (2009).Google Scholar90 Melton L, and Wahlgren C. Participating in the Rx360 pilot joint audit programme: a suppliers perspective. BioProcess International10(10),20–23 (2012).Google Scholar91 Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum. Mol. Genet.17(R1),R48–53(2008)Crossref, Medline, CAS, Google Scholar92 US FDA 2008. Guidance for FDA reviewers and sponsors: content and review of chemistry, manufacturing, and control (CMC) information for human somatic cell therapy investigational new drug applications (INDs).Google Scholar93 PAS 93. Characterization of Human Cells for Clinical Applications. BSI Standards Limited. (2011).Google Scholar94 Sheridan B, Stacey G, Wilson A, Ginty P, Bravery C, Marshall D. Standards can help bring cell therapy products to market. BioProcess International10(4),18–20 (2012).Google Scholar95 Andrews P, Cavagnaro J, Deans R et al. Harmonizing standards for producing clinical-grade therapies from pluripotent stem cells. Nat. Biotechnol.32,724–726 (2014).Crossref, Medline, CAS, Google Scholar96 Benson EE, Betsuo F, Fuller BJ, Harding K, Kofanova O. Translating cryobiology principles into transdisciplinary storage guidelines for biorepositories and biobanks: a concept paper. Cryoletters34,277–312(2013).Medline, CAS, Google Scholar97 Pegg D. Cryopreservation and Freezedrying Methods. Day DG, Stacey GN (Eds). Humana Press, Totowa, USA, 39–58 (2007).Google Scholar98 Pegg D. Viability assays for preserved cells, tissues, and organs. Cryobiology26,212–231 (1989).Crossref, Medline, CAS, Google Scholar99 Fahy GM, Wowk B, Wu J, Paynter S. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology48(1),22–35 (2004).Crossref, Medline, CAS, Google Scholar100 Hunt CJ. Cryopreservation of human stem cells for clinical application: a review. Transfus. Med. Hemother.38(2),107–123 (2011).Crossref, Medline, Google Scholar101 Day JG, Stacey GN. Cryopreservation and Freeze-drying Protocols. Day DG, Stacey GN (Eds). Humana Press, Totowa, USA (2007).Google Scholar102 Lawrence D. Stem cells in toxicology. Curr. Protocol. Toxicol.47,22:22.0.1 (2011).Google Scholar103 Inoue H, Yamanaka S. The use of induced pluripotent stem cells in drug development. Clin. Pharmacol. Therap.89(5),655–661 (2011).Crossref, Medline, CAS, Google Scholar104 Pistollato F, Bremer-Hoffmann S, Healy L, Young L, Stacey G. Standardization of pluripotent stem cell cultures for toxicity testing. Exp. Opin. Drug. Metab. Toxicol.8(2),239–257 (2012).Crossref, Medline, CAS, Google Scholar105 ICH Q 5 A (R1). Quality of Biotechnological Products: Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin. Geneva (1997). www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002801.pdfGoogle Scholar106 ICH Q 3A-3D: Impurities. Geneva. 2006–2014. www.ich.org/products/guidelines/quality/quality-single/article/impurities-in-new-drug-substances.htmlGoogle Scholar107 Code of Federal Regulations PART 1271 – Human cells, Tissues, and Cellular and Tissue-based Products FDA, 21 CFR 1271.3(y). Revised as of April 1, 2013. www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=1271.3Google Scholar108 Internation
Referência(s)