Artigo Revisado por pares

Ribonucleotide reductase of herpesviruses

1994; Wiley; Volume: 4; Issue: 1 Linguagem: Inglês

10.1002/rmv.1980040107

ISSN

1099-1654

Autores

Joe Conner, H. S. Marsden, J. Barklie Clements,

Tópico(s)

Viral-associated cancers and disorders

Resumo

Reviews in Medical VirologyVolume 4, Issue 1 p. 25-34 Classic Paper Ribonucleotide reductase of herpesviruses J. Conner, Corresponding Author J. Conner Institute of Virology, Church Street, Glasgow G11 5JR, UKInstitute of Virology, Church Street, Glasgow G11 5JR, UKSearch for more papers by this authorH. Marsden, H. Marsden Institute of Virology, Church Street, Glasgow G11 5JR, UKSearch for more papers by this authorJ. B. Clements, J. B. Clements Institute of Virology, Church Street, Glasgow G11 5JR, UKSearch for more papers by this author J. Conner, Corresponding Author J. Conner Institute of Virology, Church Street, Glasgow G11 5JR, UKInstitute of Virology, Church Street, Glasgow G11 5JR, UKSearch for more papers by this authorH. Marsden, H. Marsden Institute of Virology, Church Street, Glasgow G11 5JR, UKSearch for more papers by this authorJ. B. Clements, J. B. Clements Institute of Virology, Church Street, Glasgow G11 5JR, UKSearch for more papers by this author First published: March 1994 https://doi.org/10.1002/rmv.1980040107Citations: 21AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References 1 Honess, R. W. (1984). Herpes simplex and the herpes complex: diverse observations and a unifying hypothesis. J. Gen. Virol., 65, 2077– 2107. 2 Honess, R. W. and Roizman, B. (1974). Regulation of herpesvirus macromolecular synthesis. 1. Cascade regulation of the synthesis of three groups of viral proteins. J. Virol., 14, 8– 19. 3 Everett, R. D. (1987). The regulation of transcription of viral and cellular genes by herpesvirus immediate- early gene products. Anticancer Res., 7, 589– 604. 4 Johnson, P. A. MacLean, C., Marsden, H. S., Dalziel, R. G. and Everett, R. D. (1987). The product of gene US11 of herpes simplex virus type 1 is expressed as a true late gene. J. Gen. Virol., 67, 871– 883. 5 Thelander, L. and Reichard, P. (1979). Reduction of ribonuceotides. Annu. Rev. Biochem., 48, 133– 158. 6 Lammers, M. and Follman, H. (1983). The ribonucleotide reductases—a unique group of metalloenzymes essential for cell proliferation. Struct. Bond., 54, 27– 91. 7 Eriksson, S. and Sjoberg, B. M. (1988). Ribonucleotide reductase. In, Allosteric Enzymes, ed. by G. Herve, pp. 189– 217. CRC Press, Boca Raton. 8 Reichard, P. (1988). Interactions between deoxyribo- nucleotide and DNA synthesis. Annu. Rev. Biochem., 57, 349– 374. 9 Stubbe, J. (1990). Ribonucleotide reductases: amazing and confusing. J. Biol. Chem., 256, 5329– 5332. 10 Norlund, P., Sjoberg, B. M. and Eklund, H. (1990). Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature (London), 345, 593– 598. 11 Atta, M., Norlund, P., Aberg, A., Eklund, H. and Fontecave, M. (1992). Substitution of manganese for iron in ribonucleotide reductase from Escherichia coli J. Biol. Chem., 267, 20682– 20688. 12 Cohen, G. H., Factor, M. N. and Ponce de Leon, M. (1974). Inhibition of herpes simplex virus type 2 replication by thymidine. J. Virol., 14, 20– 25. 13 Cohen, G. H. (1972). Ribonucleotide reductase activity of synchronized KB cells infected with herpes simplex virus. J. Virol., 9, 408– 418. 14 Ponce de Leon, M., Eisenberg, R. J. and Cohen, G. H. (1977). Ribonucleotide reductase from herpes simplex virus (types 1 and 2) infected and uninfected KB cells: properties of the partially purified enzymes. J. Gen. Virol., 36, 163– 173. 15 Huzar, D. and Bacchetti, S. (1981). Partial purification and characterisation of the ribonucleotide reductase induced by herpes simplex virus infection of mammilian cells. J. Gen. Virol., 37, 580– 588. 16 Langelier, Y., Dèchamps, M. and Buttin, G. (1978). Analysis of dCMP deaminase and CDP reductase levels in hamster cells infected by herpes simplex virus. J. Virol., 26, 547– 553. 17 Langelier, Y. and Buttin, G. (1981). Characterisation of ribonucleotide reductase induction in BHK-21/ C13 Syrian hamster cell line upon infection with herpes simplex virus (HSV). J. Gen. Virol., 57, 21– 31. 18 Huszar, D. and Bacchetti, S. (1983). Is ribonucleotide reductase the transforming function of herpes simplex virus 2? Nature (London), 302, 76– 79. 19 Huszar, D., Beharry, S. and Bacchetti, S. (1983). Herpes simplex virus induced ribonucleotide reductase: development of antibodies specific for the enzyme. J. Gen Virol., 64, 1327– 1335. 20 McLauchlan, J. and Clements, J. B. (1983). DNA sequence homology between two colinear loci on the HSV genome which have different transforming abilities. EMBO J., 2, 1953– 1961. 21 McLauchlan, J. and Clements, J. B. (1983). Organisation of the herpes simplex virus type 1 transcription unit encoding two early proteins with molecular weights of 140,000 and 40,000. J. Gen. Virol., 64, 997– 1006. 22 Bacchetti, S., Evelegh, M. J., Muirhead, B., Satori, C. S. and Huszar, D. (1984). Immunological characterisation of herpes simplex virus type 1 and 2 polypeptides involved in viral ribonucleotide reductase activity. J. Virol., 49, 591– 593. 23 Preston, V. G., Palfreyman, J. W. and Dutia, B. M. (1984). Identification of a herpes simplex type 1 polypeptide which is a component of the virus- induced ribonucleotide reductase. J. Gen. Virol., 65, 1457– 1466. 24 Dutia, B. M. (1983). Ribonucleotide reductase induced by herpes simplex virus has a virus specified constituent. J. Gen. Virol., 64, 513– 521. 25 Frame, M. C., Marsden, H. S. and Dutia, B. M. (1985). The ribonucleotide reductase induced by herpes simplex virus type 1 involves minimally a complex of two polypeptides (136K and 38K). J. Gen Virol., 66, 1581– 1587. 26 Preston, V. G., Darling, A. J. and McDougall, I. M. (1988). The herpes simplex type 1 temperature sensitive mutant Ts 1222 has a single base pair deletion in the small subunit of ribonucleotide reductase. Virology, 167, 458– 467. 27 Darling, A. J., Mackay, E. M., Ingemarson, R. and Preston, V. G. (1988). Reconstitution of herpes simplex virus type 1 ribonucleotide reductase activity from the large and small subunits. Virus Genes, 2, 163– 176. 28 Huang, A., Jacobi, G., Haj-Ahmad, Y. and Bacchetti, S. (1988). Expression of the HSV-2 ribonucleotide reductase subunits in adenovirus vectors or stably transformed cells: restoration of enzymatic activity by reassociation of enzyme subunits in the absence of other HSV proteins. Virology, 163, 462– 470. 29 Ingemarson, R., Graslund, A., Darling, A. and Thelander, L. (1989). Herpes simplex virus ribonucleotide reductase: Expression in Escherichia coli and purification to homogeneity of a tyrosyl free radical-containing enzymatically active form of the 38 kilodalton subunit. J. Virol., 63, 3769– 3776. 30 Furlong, J., Conner, J., McLauchlan, J. et al. (1991). The large subunnit of herpes simplex virus type 1 ribonucleotide reductase: expression in Escherichia coli and purification. Virology, 182, 846– 851. 31 Lankinen, H., McLauchlan, J., Weir, M. et al. (1991). Purification and characterisation of the herpes simplex virus type 1 ribonucleotide reductase small subunit following expression in Escherichia coli J. Gen. Virol., 72, 1383– 1392. 32 Cohen, E. A., Charron, J., Perret, J. and Langelier, Y. (1985). Herpes simplex virus ribonucleotide reductase induced in infected BHK-21/C13 cells: biochemical evidence for the existence of two non-identical subunits, H1 and H2. J. Gen. Virol., 66, 733– 745. 33 Ingemarson, R. and Lankinen, H. (1987). The herpes simplex virus type 1 ribonucleotide reductase is a tight complex of the type α2 β2 composed of 40 k and 140 k proteins, of which the latter shows multiple forms due to proteolysis. Virology, 156, 417– 422. 34 Lankinen, H., Graslund, A. and Thelander, L. (1982). Induction of a new ribonucleotide reductase after infection of mouse L cells with pseudorabies virus. J. Virol., 41, 893– 900. 35 Cohen, J. C., Henry, B. E., Randall, C. C. and O'Callaghan, D. J. (1977). Ribonucleotide reductase activity in hydroxyurea resistent herpesvirus replication. Proc. Soc. Exp. Biol. Med., 155, 395– 399. 36 Henry, B. E., Glaser, R., Hewetson, J. and O'Callaghan, D. J. (1978). Expression of altered ribonucleotide reductase activity associated with the replication of the Epstein—Barr virus. Virology, 89, 262– 271. 37 Spector, T., Stonehuerner, J. G., Biron, K. K. and Averett, D. R. (1987). Ribonucleotide reductase induced by varicella zoster virus: characterization and potentiation of acyclovir by its inhibition. Biochem. Pharmocol., 36, 4341– 4346. 38 Nikas I., McLauchlan, J., Davison, A. J., Taylor, W. R. and Clements, J. B. (1986). Structural features of ribonucleotide reductase. Prot. Struct. Func. Genet., 1, 376– 384. 39 McGeoch, D. J., Dalrymple, M. A., Davison, A. J. et al. (1988). The complete DNA genome of herpes simplex virus type 1. J. Gen. Virol., 69, 1531– 1574. 40 Swain, M. A. and Galloway, D. A. (1986). Herpes simplex virus specifies two subunits of ribonucleotide reductase encoded by 3′ coterminal transcripts. J. Virol., 57, 802– 808. 41 Baer, R., Bankier, A., Biggin, M. D. et al. (1984). DNA sequences and expression of the B95-8 Epstein—Barr virus genome. Nature (London), 310, 207– 211. 42 Gibson, T., Stockwell, P., Ginsberg, M. and Barrell, B. (1984). Homology between two EBV early genes and HSV ribonucleotide reductase and 38K genes. Nucleic Acids Res., 12, 5087– 5099. 43 Davison, A. J. and Scott, J. E. (1986). The complete DNA sequence of varicella-zoster virus. J. Gen. Virol., 67, 1759– 1816. 44 Telford, E. A. R., Watson, M. S., McBride, K. and Davison, A. J. (1992). The DNA sequence of equine herpesvirus-1. Virology, 189, 304– 316. 45 Albrecht, J-C., Nicholas, J., Biller, D. et al. (1992). Primary structure of the herpes virus saimiri genone. J. Virol., 66, 5047– 5058. 46 Aberg, A., Hahne, S., Karlsson, M. et al. (1989). Evidence for two different classes of redox-active cysteines in ribonucleotide reductase of Escherichia coli J. Biol. Chem., 264, 12249– 12252. 47 Holmgren, A. (1985). Thioredoxin. Annu. Rev. Biochem., 54, 237– 271. 48 Darling, A. H. (1988). The principal hydrogen donor for the herpes simplex virus type 1 encoded ribonucleotide reductase in infected cells is a cellular thioredoxin. J. Gen. Virol., 69, 515– 523. 49 Chee, M. S., Bankier, A. T., Beck, S. et al. (1990). Analysis of the protein coding content of the sequence of human cytomegalovirus strain AD169. Curr. Cont. Micro. Immunol., 154, 125– 169. 50 Nutter, L. M., Grill, S. P. and Cheng, Y-C. (1985). Can ribonucleotide reductase be considered as an effective target for developing anti herpes simplex virus type 11 (HSV-2) compounds? Biochem. Pharmacol., 34, 777– 780. 51 Goldstein, D. H. and Weller, S. K. (1988). Herpes simplex virus type 1—induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: Isolation and charcterisation of ICP6 1acZ insertion mutant. J. Virol., 62, 196– 205. 52 Goldstein, D. H. and Weller, S. K. (1988). Factor(s) present in herpes simplex virus type 1—infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterisation of an ICP6 deletion mutant. Virology, 166, 41– 51. 53 Wildy, P., Field, H. J. and Nash, A. A. (1982). Classical herpes latency revisited. In, Viral Persistence ed. by B. W. H. Mahy, A. C. Minson and G. K. Darby Cambridge University Press, London. 54 Cameron, J. M., McDougall, I., Marsden, H. S. Preston, V. G., Ryan, D. M. and Subak-Sharpe, J. H. (1988). Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus and a valid antiviral target. J. Gen. Virol., 69, 2607– 2612. 55 Jacobsen, J. G., Leib, D. A., Goldstein, D. H. et al. (1989). A herpes ribonucleotide reductase deletion mutant is defective for productive acute and reactiv-atable latent infections in mice and for replication in mouse cells. Virology, 173, 276– 283. 56 Turk, S. R., Kik, N. A., Birch, G. M., Chiego, D. J. Jr. and Shipman, C. Jr. (1989). Herpes simplex virus type 1 ribonucleotide reductase null mutants induce lesions in guinea pigs. Virology, 73, 733– 735. 57 Harmenberg, J., Malm, M. and Abele, G. (1985). Deoxythymidine pools of human skin and guinea pig organs. FEBS Lett., 188, 219– 221. 58 Brandt, G. R., Kintner, R. L., Pumfery, A. M., Visalli, R. J. and Gran, D. R. (1991). The herpes simplex virus ribonucleotide reductase is required for ocular virulence. J. Gen. Virol., 72, 2043– 2049. 59 Yamada, Y., Kimura, H., Morishima, T., Daikoku, T., Maeno, K. and Nishiyama, Y. (1991). The pathogenicity of ribonucleotide reductase null mutants of herpes simplex virus type—1 in mice. J. Infect. Dis., 164, 1091– 1097. 60 Kintner, R. L., Brandt, C. R., Visalli, R. J. Pumfery, A. M. and Gran, D. R. (1991). The herpes simplex virus ribonucleotide reductase is required for ocular virulence. Invest. Opthalmol. Vis. Sci., 32, 852. 61 Idowu, A. D., Frasersmith, E. B., Poffenberger, K. L. and Herman, R. C. (1992). Deletion of the herpes simplex virus type-1 ribonucleotide reductase gene alters virulence and latency in vivo. Antivir. Res., 17, 145– 156. 62 Mele, J., Glaser, R., Nonoyama, M., Zimmerman, J. and Rapp, F. (1974). Observations on the resistance of Epstein—Barr virus DNA synthesis to hydroxyurea. Virology, 62, 102– 111. 63 Allen, G. P., Cohen, J. C., Randall, C. C. and O'Callaghan, D. J. (1978). Replication of equine her- pesvirus type 1 and type 3: Resistance to hydroxyurea and thymidine. Intervirology, 9, 276– 285. 64 Averett, D. R., Lubbers, C., Elion, G. B. and Spector, T. (1983). Ribonucleotide reductase induced by herpes simplex type 1 virus. Characterisation of a distinct enzyme. J. Biol. Chem., 258, 9831– 9838. 65 Sidwell, R. W., Arnett, G., Dixon, G. J. and Schabel, F. M. Jr. (1969). Purine analogs as potential anticytomegalovirus agents. Proc. Soc. Exp. Biol. Med., 131, 1223– 1230. 66 Brockman, R. W., Sidwell, R. W., Arnett, G. and Shaddix, S. (1970). Heterocyclic thiosemicarbazones: correlation between structure, inhibition of ribonucleotide reductase, and inhibition of DNA viruses. Proc. Coc. Exp. Biol. Med., 133, 609– 614. 67 Shipman, C. Jr., Smith, S. H., Drach, J. C. and Klayman, D. L. (1981). Antiviral activity of 2-acetylpyrimidine thiosemicarbazones against herpes simplex virus. Antimicrob. Agents Chemother., 19, 682– 685. 68 Spector, T., Averett, D. R., Nelson, D. J. et al. (1985). Potentiation of antiherpetic activity of acyclovir by ribonucleotide reductase inhibition. Proc. Natl Acad. Sci USA, 82, 4254– 4257. 69 Karlsson, A. and Harmenberg, J. (1988). Effects of ribonucleotide reductase inhibition on pyrimidine deoxyribonucleotide metabolism in acyclovirtreated cells infected with herpes simplex virus type 1. Antimicrob. Agents Chemother., 32, 1100– 1102. 70 Shipman, C. Jr, Smith, S. H., Drach, J. C. and Klayman, D. L. (1986). Thiosemicarbazones of 2-acetylpyrimidine, 2-acetylquinolone, 1-acetylisoquinolone and related compounds as inhibitors of herpes simplex virus in vitro and in a cutaneous herpes guinea pig model. Antivir. Res., 6, 197– 222. 71 Spector, T., Harrington, J. A., Morrison, R. W. Jr, et al. (1989). 2-acetylpyridine 5′-[(dimethylamino) thiocarbonyl 1]-thiocarbonohydraxone (A111OU), a potent inactivator of ribonucleotide reductases of herpes simplex and varicella-zoster viruses and a potentiator of acyclovir. Proc. Natl Acad. Sci USA, 86, 1051– 1055. 72 Turk, S. R., Shipman, C. Jr and Drach, J. C. (1986). Structure-activity relationships among α-(N)-heterocyclic acyl thiosemicarbazones and related compounds as inhibitors of herpes simplex virus type-1-specified ribonucleoside diphosphate reductase. J. Gen. Virol., 67, 1625– 1632. 73 Spector, T. and Jones, T. E. (1985). Herpes simplex type 1 ribonucleotide reductase: mechanism studies with inhibitors. J. Biol. Chem., 260, 8694– 8697. 74 Cohen, D. M., Goldstein, D. J. and Weller, S. K. (1989). Herpes simplex virus ribonucleotide reductase mutants are hypersensitive to acyclovir. Antimicrob. Agents Chemother., 33, 1395– 1399. 75 Thelander, L. and Graslund, A. (1983). Mechanism of inhibition of mammalian ribonucleotide reductase by the iron cholate of 1-formylisoquinilone thiosemi- carbazone. J. Biol. Chem., 258, 4063– 4066. 76 Turk S. R., Shipman, C. Jr and Drach, J. C. (1986). Selective inhibition of herpes simplex virus ribonucleoside diphosphate reductase by derivatives of 2-acetylpyridine thiosemicarbazone. Biochem. Pharmacol., 35, 1539– 1545. 77 Dutia, B. M., Frame, M. C., Subak-Sharpe, J. H., Clark, W. N. and Marsden, H. S. (1986). Specific inhibition of herpesvirus ribonucleotide reductase by synthetic peptides. Nature (London), 321, 439– 441. 78 Cohen, E. A., Gaudreau, P., Brazeau, P. and Langelier, Y. (1986). Specific inhibition of herpesvirus ribonucleotide reductase by a nonapeptide derived from the carboxy-terminus of subunit 2. Nature (London), 321, 441– 443. 79 Paradis, H., Gaudreau, P., Brazeau, P. and Langelier, Y. (1988). Mechanism of inhibition of herpes simplex virus (HSV) ribonucleotide reductase by a nonapeptide corresponding to the carboxy-terminus of its subunit 2. J. Biol. Chem., 263, 16045– 16050. 80 McClements, W., Yamanaka, G., Garsky, V. et al. (1988). Oligopeptides inhibit the ribonucleotide reductase of herpes simplex virus by causing subunit separation. Virology, 162, 270– 273. 81 Darling, A. J., MacKay, E. M. and Ingemarson, R. (1990). Herpes simplex virus encoded ribonucleotide reductase: evidence for the dissociation/reassociation of the holoenzyme. Virus Genes, 3, 367– 372. 82 Yang, F-D., Spanevello, R. A., Celiker, I., Hirshmann, R., Rubin, H. and Cooperman, B. S. (1990). The car- boxyl terminus heptapeptide of the R2 subunit of mammalian ribonucleotide reductase inhibits the enzyme and can be used to purify the R1 subunit. FEBS Lett., 272, 61– 64. 83 Cosentino, G., Lavalee, P., Rakhit, S. et al. (1991). Specific inhibition of ribonucleotide reductase by peptides corresponding to the C-terminal of their second subunit. Biochem. Cell Biol., 69, 79– 83. 84 Climent, I., Sjöberg, B. M. and Huang, Y. C. (1991). Carboxyterminal peptides as probes for Escherichia coli ribonucleotide reductase subunit interaction: kinetic analysis of inhibition studies. Biochemistry, 30, 5164– 5171. 85 Climent, I., Sjöberg, B. M. and Huang, Y. C. (1992). Site-directed mutagenesis and deletion of the car- boxyl terminus of Escherichia coli ribonucleotide reductase protein R2. Effects on catalytic activity and subunit interaction. Biochemistry, 31, 4801– 4807. 86 Telford, E., Lankinen, H. and Marsden, H. (1990). Inhibition of equine herpesvirus type 1 type I- induced ribonucleotide reductase by the nonapeptide YAGAVVNDL. J. Gen. Virol., 71, 1373– 1378. 87 Cohen E. A., Paradis, H., Gaudreau, P., Brazeau, P. and Langelier, Y. (1987). Identification of viral polypeptides involved in pseudorabies virus ribonucleotide reductase activity. J. Virol., 61, 2046– 2049. 88 Gaudreau, P., Michaud, J., Cohen, E. A., Langelier, Y. and Brazeau, P. (1987). Structure activity studies on synthetic peptides inhibiting herpes simplex virus ribonucleotide reductase. J. Biol. Chem., 262, 12413– 12416. 89 Gaudreau, P., Paradis, H., Langelier, Y. and Brazeau, P. (1990). Synthesis and inhibitory potency of peptides corresponding to the subunit 2 C-terminal region of herpes virus ribonucleotide reductase. J. Med. Chem., 33, 723– 730. 90 Gaudreau, P., Brazeau, P., Richier, M., Cormier, J., Langlois, D. and Langelier, Y. (1992). Structure, function and studies of peptides inhibiting the ribonucleotide reductase of herpes simplex virus type 1. J. Med. Chem., 35, 346– 350. 91 Bio-Mega Inc. (1990). Antiherpes Tetrapeptide Derivatives Having a Substituted Aspartic Acid Side Chain. European Patent Application No EP/0/411/333/A1. 92 Nikas, I., Darling, A. J., Lankinen, H. M., Cross, A. C., Marsden, H. S. and Clements, J. B. (1990). A single amino acid substitution in the large subunit of herpes simplex virus type 1 ribonucleotide reductase which prevents subunit association. J. Gen. Virol., 71, 2369– 2376. 93 Paradis, H., Gaudreau, P., Massie, B. et al (1991). Affinity purification of active subunit 1 of herpes simplex virus type 1 ribonucleotide reductase exhibiting a protein kinase activity. J. Biol. Chem., 226, 9647– 9651. 94 Mann, J. G., Graslund, A., Ochiai, E-I., Ingemarson, R. and Thelander, L. (1991). Purification and characterisation of recombinant mouse and herpes simplex virus ribonucleotide reductase R2 subunit. Biochemistry, 30, 1939– 1947. 95 Furlong, J., Meighan, M., Conner, J., Murray, J. and Clements, J. B., (1992). Methods for improved protein expression using pET vectors. Nucleic Acids Res., 20, 4668. 96 Chung, T. D., Luo, J., Wymer, J. P., Smith, C. C. and Aurelian, L. (1991). Leucine repeats in the large subunit of herpes simplex virus type 2 ribonucleotide reductase (RR; ICP10) are involved in RR activity and subunit complex formation. J. Gen. Virol., 72, 1139– 1144. 97 Lankinen, H., Telford, E., MacDonald, D. and Marsden, H. (1989). The unique N-terminal domain of the large subunit of herpes simplex ribonucleotide reductase is preferentially sensitive to proteolysis. J. Gen. Virol., 72, 1383– 1392. 98 Conner, J., Macfarlane, J., Lankinen, H. and Marsden, H. (1992). The unique N-terminus of the herpes simplex virus type 1 large subunit is not required for ribonucleotide reductase activity. J. Gen. Virol., 73, 103– 112. 99 Wymer, J. P., Chung, T. D., Chang, Y-N., Hayward, G. S. and Aurelian, L. (1989). Identification of immediate-early-type cis response elements in the promoter for the ribonucleotide reductase large subunit from herpes simplex virus type 2. J. Virol., 63, 2773– 2784. 100 Wymer, J. P., Aprhys, C. M. J., Chung, T. D., Feng, C-P., Kulka, M. and Aurelian, L. (1992). Immediate early and functional AP-1 cis-response elements are involved in the transcriptional regulation of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Virus Res., 23, 253– 270. 101 Sze, P. and Herman, R. C. (1992). The herpes simplex virus type 1 ICP6 gene is regulated by a 'leaky' early promoter. Virus Res., 26, 141– 152. 102 Clements, J. B., Watson, R. J. and Wilkie, N. M. (1977). Temporal regulation of herpes simplex virus type 1 transcription: location of transcripts on the viral genone Cell, 12, 275– 285. 103 Preston, V. G., Davison, A. J., Marsden, H. S., Timbury, M. C., Subak-Sharpe, J. H. and Wilkie, N. M. (1978). Recombinants between herpes simplex virus types 1 and 2. Analysis of genome structure and expression of immediate-early polypeptides. J. Virol., 28, 499– 517. 104 Watson, R. J., Preston, C. M. and Clements, J. B. (1979). Separation and characterisation of herpes simplex virus type 1 immediate-early mRNAs. J. Virol., 331, 42– 52. 105 Ali, M. A., McWeeney, D., Molosavljevic, A., Jurka, J. and Jariwalla, R. J. (1991). Enhanced malignant transformation induced by expression of a distinct protein domain of ribonucleotide reductase large subumit from herpes simplex virus type 2. Proc. Natl Acad. Sci. USA, 88, 8257– 8261. 106 Chung, T. D., Wymer, J. P., Smith, C. C., Kulka, M. and Aurelian, L. (1989). Protein kinase activity associated with the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). J. Virol., 63, 3389– 3398. 107 Chung, T. D., Wymer, J. P., Kulka, M., Smith, C. C. and Aurelian, L. (1990). Myristylation and polylysine-mediated activation of the protein kinase domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Virology, 179, 168– 178. 108 Luo, J-H., Smith, C. C., Kulka, M. and Aurelian, L. (1991). A truncated protein kinase domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) expressed in Escherichia coli. J. Biol. Chem., 266, 20976– 20983. 109 Luo, J-H. and Aurelian, L. (1992). The transmembrane helical segment but not the invariant lysine is required for the kinase activity of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). J. Biol. Chem., 267, 9645– 9653. 110 Conner, J., Cooper, J., Furlong, J. and Clements, J. B., (1992). An autophosphorylating but not transphosphorylating activity is associated with the unique N-terminus of the herpes simplex virus type 1 ribonucleotide reductase large subunit. J. Virol., 66, 7511– 7516. 111 Jariwalla, R. J., Aurelian, L. and Ts'o, P. O. P. (1980). Tumorigenic transformation induced by a specific fragment of DNA from herpes simplex virus type 2. Proc. Natl Acad. Sci. USA, 83, 1738– 1742. 112 Iwasaka, T., Smith, C. C., Aurelian, L. and Ts'o, P. O. P. (1985). The cervical tumour-associated antigen (ICP10/AG-4) is encoded by the transforming region of the genome of herpes simplex virus type 2. Jpn J. Cancer Res. (Gann), 76, 946– 958. 113 Hayashi, Y., Iwasaka, T., Smith, C. C., Aurelian, L., Lewis, G. K. and Ts'o, P. O. P. (1985). Multistep transformation by defined fragments of herpes simplex virus type 2 DNA; oncogenic region and its gene production. Proc. Natl Acad. Sci. USA, 82, 8493– 8497. 114 Jariwalla, R. J., Tanczos, B., Jones, C., Ortiz, J. and Salimi-Lopez, S. (1986). DNA amplification and neoplastic transformation mediated by a herpes simplex DNA fragment containing cell-related sequences. Proc. Natl Acad. Sci. USA, 83, 1738– 1742. 115 Macnab, J. C. M. (1987). Herpes simplex virus and human cytomegalovirus: their role in morphological transformation and genital cancers. J. Gen. Virol., 68, 2525– 2550. Citing Literature Volume4, Issue1March 1994Pages 25-34 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX