Artigo Revisado por pares

2,3,4-Tricarba-nido-hexaboranes(7) with a Bridging B−Ethyl−B Moiety

1998; Wiley; Volume: 1998; Issue: 5 Linguagem: Inglês

10.1002/(sici)1099-0682(199805)1998

ISSN

1099-0682

Autores

Bernd Wrackmeyer, Hans‐Jörg Schanz, Matthias Hofmann, Paul von Ragué Schleyer,

Tópico(s)

Luminescence and Fluorescent Materials

Resumo

European Journal of Inorganic ChemistryVolume 1998, Issue 5 p. 633-637 Full Paper 2,3,4-Tricarba-nido-hexaboranes(7) with a Bridging B−Ethyl−B Moiety Bernd Wrackmeyer, Bernd Wrackmeyer [email protected] Search for more papers by this authorHans-Jörg Schanz, Hans-Jörg Schanz Laboratorium für Anorganische Chemie, Universität Bayreuth, D-95440 Bayreuth, Fax: Int. code +49(0)921/552157Search for more papers by this authorMatthias Hofmann, Matthias Hofmann Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestr. 42, D-91054 Erlangen, Fax: Int. code +49(0)9131/859132Search for more papers by this authorPaul von R. Schleyer, Paul von R. Schleyer [email protected] Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestr. 42, D-91054 Erlangen, Fax: Int. code +49(0)9131/859132Search for more papers by this author Bernd Wrackmeyer, Bernd Wrackmeyer [email protected] Search for more papers by this authorHans-Jörg Schanz, Hans-Jörg Schanz Laboratorium für Anorganische Chemie, Universität Bayreuth, D-95440 Bayreuth, Fax: Int. code +49(0)921/552157Search for more papers by this authorMatthias Hofmann, Matthias Hofmann Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestr. 42, D-91054 Erlangen, Fax: Int. code +49(0)9131/859132Search for more papers by this authorPaul von R. Schleyer, Paul von R. Schleyer [email protected] Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestr. 42, D-91054 Erlangen, Fax: Int. code +49(0)9131/859132Search for more papers by this author First published: May 1998 https://doi.org/10.1002/(SICI)1099-0682(199805)1998:5 3.0.CO;2-DCitations: 14AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Hydroboration of diethyl(1-propynyl)borane 1 with tetraethyldiborane(6) in the presence of a catalytic amount of trimethyl- or tributyltin chloride gave two new organo-substituted carboranes 6 and 7 with 2,3,5-tricarba-nido-hexaborane(7) and 2,3,4-tricarba-nido-hexaborane(7) skeletons, respectively, along with polymeric material and the known organo-substituted 1-carba-arachno-pentaborane(10) (3) and pentaethyl-1,5-dicarba-closo-pentaborane(5) (4). Selective 11B(5,6) decoupled 13C-NMR spectra indicate an unprecedented B(5)−ethyl−B(6) bridge in 7. This structure is supported by the agreement between experimental and calculated 11B- and 13C-chemical shifts on a model compound 7d with methyl groups in the 1,2,3,5,6-positions and an ethyl group bridging B(5) and B(6). References 1(1a) R. N. Grimes, Carboranes, Academic Press, London, 1970. Google Scholar(1b) – C. L. Bramlett, R. N. Grimes, J. Am. Chem. Soc. 1966, 88, 4269–4270. 10.1021/ja00970a035 CASWeb of Science®Google Scholar 2(2a) M. A. Fox, R. Greatrex, J. Chem. Soc., Chem. Commun. 1995, 667–668. Google Scholar(2b) – M. A. Fox, R. Greatrex, J. Chem. Soc., Chem. Commun. 1996, 175–176. Google Scholar 3 R. Köster, G. Benedikt, M. A. Grassberger, Justus Liebigs. Ann. Chem. 1968, 719, 187–209. 10.1002/jlac.19687190120 Web of Science®Google Scholar 4 The formula Et2BH is used for simplicity. Tetraethyldiborane(6) is usually obtained and used as a mixture with triethylborane and small amounts of other ethyldiboranes(6): R. Köster, G. Bruno, P. Binger, Justus Liebigs Ann Chem. 1961, 644, 1–22. 10.1002/jlac.19616440102 Google Scholar 5(5a) R. Köster, G. W. Rotermund, Tetrahedron Lett. 1964, 1667. Google Scholar(5b) – P. Binger, Tetrahedron Lett., 1966, 2675. Google Scholar(5c) – R. Köster, H.-J. Horstschäfer, P. Binger, P. K. Matschei, Liebigs Ann. Chem. 1975, 1339–1356. Google Scholar 6(6a) R. Köster, G. Seidel, B. Wrackmeyer, Angew. Chem. 1994, 106, 2380–2382; 10.1002/ange.19941062213 Google Scholar Angew. Chem. Int. Ed. Engl. 1994, 33, 2294–2296. 10.1002/anie.199422941 Web of Science®Google Scholar(6b) – B. Wrackmeyer, H.-J. Schanz, Collect. Czech. Chem. Commun. 1997, 62, 1254–1262. 10.1135/cccc19971254 CASWeb of Science®Google Scholar 7 R. Köster, R. Boese, H.-J. Schanz, B. Wrackmeyer, J. Chem. Soc., Chem. Commun. 1995, 1691–1692. Google Scholar 8(8a) A. Feßenbecker, A. Hergel, R. Hettrich, V. Schäfer, W. Siebert, Chem. Ber. 1993, 126, 2205. 10.1002/cber.19931261007 CASWeb of Science®Google Scholar(8b) – B. Wrackmeyer, H.-J. Schanz, Main Group Met. Chem. 1998, 21, 29–32. 10.1515/MGMC.1998.21.1.29 CASWeb of Science®Google Scholar 9 B. Gangnus, H. Stock, W. Siebert, M. Hofmann, P. v. R. Schleyer, Angew, Chem. 1994, 106, 2384; 10.1002/ange.19941062214 CASGoogle Scholar Angew, Chem. Int. Ed. Engl. 1994, 33, 2296. 10.1002/anie.199422961 Web of Science®Google Scholar 10 B. Wrackmeyer, H.-J. Schanz, W. Milius, Angew. Chem. 1997, 109, 98–99; 10.1002/ange.19971090128 Google Scholar Angew. Chem. Int. Ed. Engl. 1997, 36, 75–77. 10.1002/anie.199700751 CASWeb of Science®Google Scholar 11 M. Hofmann, M. A. Fox, R. Greatrex, R. E. Williams, P. v. R. Schleyer, J. Organomet. Chem. in press. Google Scholar 12 D. F. Gaines, Acc. Chem. Res. 1973, 6, 416–421. 10.1021/ar50072a005 CASWeb of Science®Google Scholar 13 A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, Oxford 1961, chapter 8. Web of Science®Google Scholar 14 B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 1988, 20, 61–203. 10.1016/S0066-4103(08)60170-2 CASGoogle Scholar 15(15a) M. Bühl, P. v. R. Schleyer J. Am. Chem. Soc. 1992, 114, 477–491. 10.1021/ja00028a013 CASWeb of Science®Google Scholar(15b) – M. Bühl, J. Gauss, M. Hofmann, P. v. R. Schleyer J. Am. Chem. Soc. 1993, 115, 12385–12390. 10.1021/ja00079a020 CASWeb of Science®Google Scholar(15c)– See M. Diaz, J. Jaballas, J. Arias, H. Lee, T. Onak, J. Am. Chem. Soc. 1996, 118, 4405–4410 for an extensive bibliography. 10.1021/ja954089y CASWeb of Science®Google Scholar 16(16a) M. A. Fox, R. Greatrex, M. Hofmann, P. v. R. Schleyer, R. E. Williams Angew. Chem. 1997, 109, 1542–1544; 10.1002/ange.19971091323 Google Scholar Angew. Chem. Int. Ed. Engl. 1997, 36, 1498–1501. 10.1002/anie.199714981 Web of Science®Google Scholar(16b) – M. Diaz, J. Jaballas, D. Tran, H. Lee, J. Arias, T. Onak, Inorg. Chem. 1996, 35, 4536–4540 and references cited therein. 10.1021/ic960254e CASWeb of Science®Google Scholar 17 GIAO chemical shifts Google Scholar(17a) – K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251) and MP2(fc)6-31G* geometries 10.1021/ja00179a005 CASWeb of Science®Google Scholar(17b) – M. Häser, R. Ahlrichs, H. P. Baron, P. Weis, H. Horn, Theor. Chim. Acta 1992, 83, 455) were computed with the Gaussian 94 program 10.1007/BF01113068 CASWeb of Science®Google Scholar(17c)– Gaussian 94, Revision D.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995). Google Scholar 18 For the parent 2,3,4-C3B3H7 we get IGLO/DZ/MP2(fu)/6-31G* chemical shifts of –52.9 (B1), 0.7 (B5,6), 87.6 (C2,4) and 120.0 (C3); experimental δ11B data :[2b] –57.9 [B(1)), –0.3 (B(5,6)]. Google Scholar 19 Geometric effects can be shown to be less important: A structure based on 7d but with the methyl groups at C(2), C(3) and the bridging methylene group replaced by H (i.e. 7c in the geometry of 7d) gave computed chemical shifts [B(1): –42.3, B(5): 4.0, B(6): –3.1, C(2): 88.4, C(3): 138.0, C(4): –75.1, C(μ-CH2): –9.7] close to those for the optimized 7c geometry. Google Scholar 20 W. Koch, P. v. R. Schleyer, P. Buzek, B. Liu, Croat. Chim. Acta 1992, 65, 655–672 and literature cited. CASWeb of Science®Google Scholar Citing Literature Volume1998, Issue5May 1998Pages 633-637 ReferencesRelatedInformation

Referência(s)