Detection and Extraction of Signals in Noise from the Point of View of Statistical Decision Theory. I
1955; Society for Industrial and Applied Mathematics; Volume: 3; Issue: 4 Linguagem: Inglês
10.1137/0103017
ISSN2168-3484
AutoresDavid Middleton, David Van Meter,
Tópico(s)Ecosystem dynamics and resilience
ResumoPrevious article Next article Detection and Extraction of Signals in Noise from the Point of View of Statistical Decision Theory. IDavid Middleton and David Van MeterDavid Middleton and David Van Meterhttps://doi.org/10.1137/0103017PDFPDF PLUSBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1.1] Abraham Wald, Statistical Decision Functions, John Wiley & Sons Inc., New York, N. Y., 1950ix+179 MR0036976 (12,193f) Google Scholar[1.2] David Blackwell and , M. A. Girshick, Theory of games and statistical decisions, John Wiley and Sons, Inc., New York, 1954xi+355 MR0070134 (16,1135a) Google Scholar[1.3] P. M. Woodward and , I. L. Davies, Information theory and inverse probability in telecommunication, Proc. Inst. Elec. Engrs. Part III., 99 (1952), 37–44 MR0045977 (13,664g) ISIGoogle Scholar[1.4] Norbert Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series. With Engineering Applications, The Technology Press of the Massachusetts Institute of Technology, Cambridge, Mass, 1949ix+163 MR0031213 (11,118j) CrossrefGoogle Scholar[1.5] S. O. Rice, Mathematical analysis of random noise, Bell System Tech. J., 23 (1944), 282–332 MR0010932 (6,89b) CrossrefGoogle Scholar[1.6] C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379–423, 623–656 MR0026286 (10,133e) CrossrefGoogle Scholar[1.7] J. L. Doob, Stochastic processes, John Wiley & Sons Inc., New York, 1953viii+654 MR0058896 (15,445b) Google Scholar[1.8] A. Blanc-Lapierre and , Robert Fortet, Théorie des fonctions aléatoires. Applications à divers phénomènes de fluctuation, Masson et Cie, Paris, 1953xvi+693 MR0061780 (15,883d) Google Scholar[1.9] D. Middleton, Statistical theory of signal detection, Symposium: “Statistical Methods in Communication Engineering,”, Berkeley, 1953, Aug. 17, Trans. Prof. Group Information Theory I.R.E., No. 3, March 1954, p. 26. Google Scholar[1.10] David Van Meter and , David Middleton, Modern statistical approaches to reception in communication theory, Trans. I.R.E., PGIT-4 (1954), 119–145 MR0089129 (19,622k) Google Scholar[1.10A] D. Middleton and , D. Van Meter, On Optimum Multiple Alternative Detection of Signals in Noise, Trans. Prof. Group Information Theory (I.R.E.), II-1 (1955), 1–, Sept. CrossrefISIGoogle Scholar[1.11] D. O. North, Analysis of the factors which determine signal-to-noise discrimination in radar, RCA Tech. Rept. PTR-6C, 1943, June. Google Scholar[1.12] J. H. Van Vleck and , D. A Middleton, theoretical comparison of the visual, aural, and meter reception of pulsed signals in the presence of noise, J. Appl. Phys., 17 (1946), 940– 10.1063/1.1707666 CrossrefISIGoogle Scholar[1.13] H. Den Hartog and , F. A. Muller, Optimum instrument response for discrimination against spontaneous fluctuations, Physica, 13 (1947), 571– 10.1016/0031-8914(47)90027-X CrossrefISIGoogle Scholar[1.14] J. I. Marcum, A statistical theory of target detection by pulsed radar, Repts., RM-753, R-113, Rand Corp., 1948, see also RM-15061 (1947). Google Scholar[1.15] Bernard M. Dwork, Detection of a pulse superimposed on fluctuation noise, Proc. I. R. E., 38 (1950), 771–774 MR0036961 (12,191f) CrossrefISIGoogle Scholar[1.16] A. J. F. Siegert, Threshold signals, Rad. Lab. Series No. 24 (Mass. Inst. Tech.), McGraw-Hill, New York, 1950, see Preface and Sec. 7.5 of J. L. Lawson and G. E. Uhlenbeck Google Scholar[1.17] H. E. Singleton, Theory of non-linear transducers, Tech. Rept., 160, Res. Lab. of Electronics (Mass. Inst. Tech.), 1950, August Google Scholar[1.18] H. Hanse, Masters Thesis, The optimization and analysis of systems for the detection of pulsed signals in random noise, Doctoral Dissertation, Mass. Inst. Tech., 1951, January Google Scholar[1.19] M. Schwartz, Masters Thesis, A statistical approach to the automatic search problem, Doctoral Dissertation, Harvard, 1951, June Google Scholar[1.20] D. L. Drukey, Optimization techniques for detecting pulse signals in noise, Proc. I.R.E., 40 (1952), 217–, (abstract) ISIGoogle Scholar[1.21] T. S. George, Fluctuations of ground clutter return in airborne radar equipment, J. Inst. Elect. Engrs., 99 (1952), 92– Google Scholar[1.22] L. A. Zadeh and , J. R. Ragazzini, Optimum filters for the detection of signals in noise, Proc. I.R.E., 40 (1952), 1223– CrossrefISIGoogle Scholar[1.23] I. L. Davies, On determining the presence of signals in noise, Proc. Inst. Elect. Engrs., 99 (1952), 45– ISIGoogle Scholar[1.24] T. G. Slattery, The detection of a sine wave in the presence of noise by the use of a non-linear filter, Proc. I.R.E., 40 (1952), 1232– CrossrefISIGoogle Scholar[1.25] Edgar Reich and , Peter Swerling, The detection of a sine wave in Gaussian noise, J. Appl. Phys., 24 (1953), 289–296 10.1063/1.1721267 MR0054225 (14,890f) CrossrefISIGoogle Scholar[1.26] David Middleton, Statistical criteria for the detection of pulsed carriers in noise. I, J. Appl. Phys., 24 (1953), 371–378 10.1063/1.1721290 MR0055652 (14,1105c) CrossrefISIGoogle Scholar[1.27] H. Urkowitz, Filter for detection of small radar signals in clutter, J. Appl. Phys., 24 (1953), 1024– 10.1063/1.1721429 CrossrefISIGoogle Scholar[1.28] L. A. Zadeh, Optimum non-linear filters for the extraction and detection of signals, Convention Record of the I.R.E., 57 (1953), , Part 8 Google Scholar[1.29] L. A. Zadeh, Optimum nonlinear filters, J. Appl. Phys., 24 (1953), 396–404 10.1063/1.1721293 MR0058451 (15,376c) CrossrefISIGoogle Scholar[1.30] S. M. Kaplan and , R. W. McFall, The statistical properties of noise applied to radar range performance, Proc. I.R.E., 39 (1951), 56– CrossrefISIGoogle Scholar[1.31] D. Middleton, The statistical theory of detection, I., Report, 35, Lincoln Lab., 1953, (Mass. Inst. Tech.), November Google Scholar[1.32] R. C. Davis, On the detection of sure signals in noise, J. Appl. Phys., 25 (1954), 76–82 10.1063/1.1721524 MR0059509 (15,542g) CrossrefISIGoogle Scholar[1.33] W. M. Stone, On the statistical theory of detection of a randomly modulated carrier, J. Appl. Phys., 24 (1953), 935– 10.1063/1.1721405 CrossrefISIGoogle Scholar[1.34] W. W. Peterson, , T. G. Birdsall and , W. C. Fox, The theory of signal dectectability, Trans. I.R.E., PGIT-4 (1954), 171–212 MR0089130 (19,623a) Google Scholar[1.35A] Wilson P. Tanner, Jr. and , John A. Swets, The human use of information. I. Signal detection for the case of the signal known exactly, Trans. I.R.E., PGIT-4 (1954), 213–221 MR0088410 (19,515g) Google Scholar[1.35B] P. Tanner, Wilson, Jr. and , Robert Z. Norman, The human use of information. II. Signal detection for the case of an unknown signal parameter, Trans. I.R.E., PGIT-4 (1954), 222–227 MR0088411 (19,515h) Google Scholar[1.36] Lotfi A. Zadeh and , John R. Ragazzini, An extension of Wiener's theory of prediction, J. Appl. Phys., 21 (1950), 645–655 10.1063/1.1699725 MR0038052 (12,347g) CrossrefISIGoogle Scholar[1.37] W. D. White, Non-linear sampling filters, Proc. I.R.E., 39 (1951), 303–, (abstract) ISIGoogle Scholar[1.38] R. C. Booton, Jr., An optimization theory for time-varying linear systems with non-stationary statistical inputs, Proc. I.R.E., 40 (1952), 977– CrossrefISIGoogle Scholar[1.39] R. S. Berkowitz, Optimum linear shaping and filtering networks, Proc. I.R.E., 40 (1952), 219–, (abstract) ISIGoogle Scholar[1.40] R. C. Davis, On the theory of prediction of nonstationary stochastic processes, J. Appl. Phys., 23 (1952), 1047–1053 10.1063/1.1702343 MR0050214 (14,295f) CrossrefISIGoogle Scholar[1.41] C. L. Dolph and , M. A. Woodbury, On the relation between Green's functions and covariances of certain stochastic processes and its application to unbiased linear prediction, Trans. Amer. Math. Soc., 72 (1952), 519–550 MR0050215 (14,295g) ISIGoogle Scholar[1.42] T. G. Slattery, Non-linear filter design on maximum likelihood basis, Proc. I.R.E., 40 (1952), 219–, (abstract) CrossrefISIGoogle Scholar[1.43] G. W. Preston, The equivalence of optimum transducers and sufficient and most efficient statistics, J. Appl. Phys., 24 (1953), 841– 10.1063/1.1721392 CrossrefISIGoogle Scholar[1.44] D. Slepian, Estimation of signal parameters in the presence of noise, Trans. Prof. Group Information Theory (I.R.E.), (1954), 68– CrossrefGoogle Scholar[1.45] D. C. Youla, The use of the method of maximum likelihood in estimating continuous-modulated intelligence which has been corrupted by noise, Trans. Prof. Group Information Theory (I.R.E.), (1954), 90– CrossrefGoogle Scholar[1.46] L. A. Zadeh, General filters for separation of signal and noise, Proceedings of the symposium on information networks, New York, April, 1954, Polytechnic Institute of Brooklyn, Brooklyn, N. Y., 1955, 31–49 MR0077818 (17,1100a) Google Scholar[1.47] R. A. Drenick, A non-linear prediction theory, Trans. I.R.E., PGIT-4 (1954), 146–162 MR0088419 (19,516h) Google Scholar[1.48] D. Van Meter, Masters Thesis, Optimum decision systems for the reception of signals in noise, Doctoral Dissertation, Harvard, 1955, Jan. Google Scholar[1.49] R. Drenick, , F. S. Gartenhouse and , P. Nesbeda, Detection of Coherent and Non Coherent Signals, I.R.E. Convention Record, (1955), , Part 4 Google Scholar[1.50] A. H. Benner and , R. F. Drenick, On the Problem of Optimum Detection of Pulsed Signals in Noise, RCA Review 16, 461 (1955), Google Scholar[2.1] Ming Chen Wang and , G. E. Uhlenbeck, On the theory of the Brownian motion. II, Rev. Modern Phys., 17 (1945), 323–342 10.1103/RevModPhys.17.323 MR0013266 (7,130e) CrossrefGoogle Scholar[2.2] J. L. Hodges, Jr. and , E. L Lehmann, Some problems in minimax point estimation, Ann. Math. Statistics, 21 (1950), 182–197 MR0035949 (12,36g) CrossrefISIGoogle Scholar[2.3] Wassily Hoeffding, “Optimum” nonparametric tests, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, 83–92 MR0044799 (13,479i) Google Scholar[2.4] E. L. Lehmann and , C. Stein, On the theory of some nonparametric hypotheses, Ann. Math. Statistics, 20 (1949), 28–45 MR0030168 (10,723c) CrossrefISIGoogle Scholar[2.5] P. M. Woodward, Probability and information theory, with applications to radar, McGraw-Hill Book Co., Inc., New York, 1953x+128 MR0058912 (15,450c) Google Scholar[2.6] Edward W. Samson, Fundamental natural concepts of information theory, Rep. E5079, Communications Laboratory, Electronics Research Division, Air Force Cambridge Research Center, Cambridge, Mass., 1951, 25– MR0061348 (15,812a) Google Scholar[2.7] J. L. Hodges, Jr. and , E. L. Lehmann, The use of previous experience in reaching statistical decisions, Ann. Math. Statistics, 23 (1952), 396–407 MR0050240 (14,299b) CrossrefISIGoogle Scholar[3.1] D. Middleton, On the theory of random noise. Phenomenonological models I, II, J. Appl. Phys., 22 (1951), 1143–1153 10.1063/1.1700123 CrossrefISIGoogle Scholar[3.2] J. A. Mullen, Masters Thesis, The rectification of non-gaussian noise, Doctoral Dissertation, Harvard, 1955, Jan., (esp. Chapter 2, 3, and associated bibliographies) Google Scholar[3.3] Y. W. Lee, , T. P. Cheatham, Jr. and , J. B. Wiesner, Application of correlation analysis to the detection of periodic signals in noise, Proc. I. R. E., 38 (1950), 1165–1171 MR0036962 (12,191g) CrossrefISIGoogle Scholar[3.4] D. Middleton, Rectification of a sinusoidally modulated carrier in the presence of noise, Proc. I.R.E., 36 (1948), 1467– CrossrefISIGoogle Scholar[3.5] D. Middleton, , Quart. Appl. Math., 7 (1949), 129–, ibid, 8 (1950), p. 39; J. Appl. Phys., 20 (1949), p. 334 CrossrefISIGoogle Scholar[3.6] D. Van Meter, Masters Thesis, Optimum decision systems for the reception of signals in noise, Doctoral Dissertation, Harvard, 1955, Jan., pgs. (3–24) et seq. Google Scholar[3.7] David Middleton, Information loss attending the decision operation in detection, J. Appl. Phys., 25 (1954), 127–128 MR0060799 (15,728i) ISIGoogle Scholar[3.8] Abraham Wald, Sequential Analysis, John Wiley & Sons Inc., New York, 1947xii+212 MR0020764 (8,593h) Google Scholar[3.9] A. Wald and , J. Wolfowitz, Optimum character of the sequential probability ratio test, Ann. Math. Statistics, 19 (1948), 326–339 MR0026779 (10,201e) CrossrefISIGoogle Scholar[3.10] M. Schwartz, Masters Thesis, A statistical approach to the automatic search problem, Doctoral Dissertation, Harvard, 1951, June Google Scholar[3.11] David Middleton, Statistical criteria for the detection of pulsed carriers in noise. I, J. Appl. Phys., 24 (1953), 371–378 10.1063/1.1721290 MR0055652 (14,1105c) CrossrefISIGoogle Scholar[3.12] J. V. Harrington, An analysis of the detection of repeated signals in noise by binary integration, Lab. Tech. Report, 13, (Mass. Inst. Tech.), 1952, Aug. 14 Google Scholar[3.13] I. S. Reed, Analysis of signal detection by sequential observer, Lincoln Lab. Tech. Report, 20, (Mass. Inst. Tech.), 1953, March 12 Google Scholar[3.14] W. C. Fox, Signal detectability: A unified description of statistical methods employing fixed and sequential observation processes, Tech. Rept., 19, Electronic Defense Group, Univ. of Michigan, 1953, Dec., See also ref.[1.34]. Google Scholar[3.15] H. Blasbalg, Theory of sequential filtering and its application to signal detection and classification, Rad. Lab. Tech.,Report, AF-8, The Johns Hopkins Univ., 1954, Oct. 18 Google Scholar[3.16] J. Bussgang, Masters Thesis, Sequential detection of signals in noise, Doctoral Dissertation, Harvard, 1955, Jan. Google Scholar[3.17] J. Bussgang and , D. Middleton, Sequential detection of signals in noise, Cruft Lab. Tech. Report, 115, Harvard Univ., 1955, March,(Also, An analysis of optimum sequential detectors, presented at I.R.E., Wescon meeting, San Francisco, August, 1955.) Google Scholar[4.1] J. L. Hodges, Jr. and , E. L Lehmann, Some problems in minimax point estimation, Ann. Math. Statistics, 21 (1950), 182–197 MR0035949 (12,36g) CrossrefISIGoogle Scholar[4.2] H. Cramér, Mathematical methods of statistics, Princeton, 1946 Google Scholar[4.3] Ulf Grenander, Stochastic processes and statistical inference, Ark. Mat., 1 (1950), 195–277 MR0039202 (12,511f) CrossrefGoogle Scholar[4.4] A. Wald, Contributions to the theory of statistical estimation and testing hypothesis, Ann. Math. Statistics, 21 (1950), 182–, Theorems 5 and 6. CrossrefISIGoogle Scholar[4.5] E. J. G. Pitman, The estimation of location and scale parameters of a continuous population of any given form, Biometrika, 30 (1939), 391– CrossrefGoogle Scholar[4.6] M. A. Girshick and , L. J. Savage, Bayes and minimax estimates for quadratic loss functions, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, 53–73 MR0045365 (13,571h) Google Scholar[4.7] R. C. Phidlips and , P. R. Weiss, Theoretical calculation on best smoothing of position data for gunnery prediction, Rad. Lab. Rept., 532, (Mass. Inst. Tech.), 1944 Google Scholar[4.8] John von Neumann and , Oskar Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, N. J., 1947xviii+641 MR0021298 (9,50f) Google Scholar[4.9] J. C. C. McKinsey, Introduction to the theory of games, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1952x+371 MR0050248 (14,300d) Google Scholar[A.1] Kari Karhunen, Zur Spektraltheorie stochastischer Prozesse, Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., 1946 (1946), 7– MR0023012 (9,292h) Google Scholar[A.2] A. J. F. Siegert, Passage of Stationary Processes Through Linear and Non-Linear Devices, Trans. Inst. Radio Engrs., PGIT—3 (1954), 4– Google Scholar[A.3] R. C. Davis, On the theory of prediction of non-stationary stochastic processes, J. Appl. Phys., 23 (1952), 1047–1053 10.1063/1.1702343 MR0050214 (14,295f) CrossrefISIGoogle Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails Hypothesis Testing of Gaussian Processes with Composite AlternativesJournal of the Society for Industrial and Applied Mathematics, Vol. 12, No. 2 | 28 July 2006AbstractPDF (1413 KB)The Detection of Radar Echoes in Noise. IJournal of the Society for Industrial and Applied Mathematics, Vol. 8, No. 2 | 10 July 2006AbstractPDF (2758 KB) Volume 3, Issue 4| 1955Journal of the Society for Industrial and Applied Mathematics173-261 History Submitted:14 March 1955Published online:28 July 2006 InformationCopyright © 1955 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0103017Article page range:pp. 192-253ISSN (print):0368-4245ISSN (online):2168-3484Publisher:Society for Industrial and Applied Mathematics
Referência(s)