Artigo Revisado por pares

Distribution of CGRP-like immunoreactivity in the chick and quail brain

2000; Wiley; Volume: 421; Issue: 4 Linguagem: Inglês

10.1002/(sici)1096-9861(20000612)421

ISSN

1096-9861

Autores

Enrique Lanuza, D.C. Davies, José María Landete, Amparo Novejarque, Fernando Mart�nez-Garc�a,

Tópico(s)

Neuroendocrine regulation and behavior

Resumo

Journal of Comparative NeurologyVolume 421, Issue 4 p. 515-532 Article Distribution of CGRP-like immunoreactivity in the chick and quail brain Enrique Lanuza, Enrique Lanuza Departament de Biologia Animal, Unitat de Morfologia Microscòpica, Facultat de Ciències Biològiques, Universitat de València, València, ES-46100, Spain Center for Neural Science, New York University, New York, New York 10003Search for more papers by this authorD. Ceri Davies, D. Ceri Davies Department of Anatomy and Developmental Biology, St George's Hospital Medical School, London SW17 0RE, United KingdomSearch for more papers by this authorJosé Maria Landete, José Maria Landete Departament de Biologia Animal, Unitat de Morfologia Microscòpica, Facultat de Ciències Biològiques, Universitat de València, València, ES-46100, SpainSearch for more papers by this authorAmparo Novejarque, Amparo Novejarque Departament de Biologia Animal, Unitat de Morfologia Microscòpica, Facultat de Ciències Biològiques, Universitat de València, València, ES-46100, SpainSearch for more papers by this authorFernando Martínez-García, Corresponding Author Fernando Martínez-García [email protected] Departament de Biologia Animal, Unitat de Morfologia Microscòpica, Facultat de Ciències Biològiques, Universitat de València, València, ES-46100, SpainUniversitat de València. Facultat de Ciències Biològiques. Departament de Biologia Animal (Unitat de Morfologia Microscòpica). C. Dr. Moliner, 50. ES-46100 Burjassot, València, SpainSearch for more papers by this author Enrique Lanuza, Enrique Lanuza Departament de Biologia Animal, Unitat de Morfologia Microscòpica, Facultat de Ciències Biològiques, Universitat de València, València, ES-46100, Spain Center for Neural Science, New York University, New York, New York 10003Search for more papers by this authorD. Ceri Davies, D. Ceri Davies Department of Anatomy and Developmental Biology, St George's Hospital Medical School, London SW17 0RE, United KingdomSearch for more papers by this authorJosé Maria Landete, José Maria Landete Departament de Biologia Animal, Unitat de Morfologia Microscòpica, Facultat de Ciències Biològiques, Universitat de València, València, ES-46100, SpainSearch for more papers by this authorAmparo Novejarque, Amparo Novejarque Departament de Biologia Animal, Unitat de Morfologia Microscòpica, Facultat de Ciències Biològiques, Universitat de València, València, ES-46100, SpainSearch for more papers by this authorFernando Martínez-García, Corresponding Author Fernando Martínez-García [email protected] Departament de Biologia Animal, Unitat de Morfologia Microscòpica, Facultat de Ciències Biològiques, Universitat de València, València, ES-46100, SpainUniversitat de València. Facultat de Ciències Biològiques. Departament de Biologia Animal (Unitat de Morfologia Microscòpica). C. Dr. Moliner, 50. ES-46100 Burjassot, València, SpainSearch for more papers by this author First published: 23 May 2000 https://doi.org/10.1002/(SICI)1096-9861(20000612)421:4 3.0.CO;2-6Citations: 41Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Calcitonin gene-related peptide (CGRP)-containing neurones have been implicated in the transmission of visceral sensory information to the cortex and in the control of arterial blood pressure in mammals. However, little is known about its function in other vertebrates. As a first step toward investigating the function of CGRP in birds, its distribution was studied in the domestic chick and quail brain by means of immunocytochemistry, by using antibodies against rat CGRP. The distribution of CGRP immunoreactivity in the chick and quail central nervous system was found to be similar. CGRP-immunoreactive (CGRPi) perikarya were not present in the telencephalon. In the diencephalon, CGRPi perikarya were present mainly in the shell of the thalamic nucleus ovoidalis, the nucleus semilunaris paraovoidalis, the nucleus dorsolateralis posterior thalami, and in the hypothalamic nucleus of the ansa lenticularis. In the brainstem, CGRPi perikarya were present in the nucleus mesencephalicus nervi trigemini, the nucleus tegmenti ventralis, the locus coeruleus, the nucleus linearis caudalis and in the parabrachial region. In addition CGRPi perikarya were found in the motor nuclei of the III, IV, V, VI, VII, IX, X, and XII cranial nerves. The telencephalon contained CGRPi fibres within the paleostriatal complex (mainly in the ventral paleostriatum), parts of the neostriatum and ventral hyperstriatum, parts of the archistriatum, and the septum. In the diencephalon, the densest plexus of CGRPi fibres was observed in the dorsal reticular thalamus. A less dense CGRPi innervation was present in some dorsal thalamic nuclei and in the medial and periventricular hypothalamus. The pretectum and midbrain tegmentum also contained CGRPi fibres, whereas the optic tectum was virtually devoid of immunolabelling. Scattered CGRPi fibres were observed in the central grey and neighbouring pontine areas. Some of the sensory fibres of the trigeminal, vagal, glossopharyngeal, and spinal nerves were also CGRPi. The results of comparative studies indicate that the presence of CGRP in some thalamo-telencephalic projections is a primitive feature of the forebrain of amniotes. Therefore, the brain areas giving rise to and receiving such a projection in different vertebrates, are likely to be homologous. J. Comp. Neurol. 421:515–532, 2000. © 2000 Wiley-Liss, Inc. LITERATURE CITED Alden M, Besson JM, Bernard JF. 1994. Organization of the efferent projections from the pontine parabrachial area to the bed nucleus of the stria terminalis and neighboring regions: a PHA-L study in the rat. J Comp Neurol 341: 289–314. 10.1002/cne.903410302 CASPubMedWeb of Science®Google Scholar Alheid G, de Olmos JS, Beltramino CA. 1995. Amydala and extended amygdala. In: G Paxinos, editor. The rat nervous system, 2nd ed. San Diego: Academic Press. p 495–572. Google Scholar Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM. 1982. Alternative RNA processing in calcitonin gene-expression generates mRNAs encoding different polypeptide products. Nature 298: 240–244. 10.1038/298240a0 PubMedWeb of Science®Google Scholar Amara SG, Arriza JL, Leff SE, Swanson LW, Evans RM, Rosenfeld MG. 1985. Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science 229: 1094–1097. 10.1126/science.2994212 CASPubMedWeb of Science®Google Scholar Asté N, Balthazart J, Absil P, Grossmann R, Mülhbauer E, Viglietti-Panzica G, Panzica GC. 1998. Anatomical and neurochemical definition of the nucleus of the stria terminalis in Japanese quail (Coturnix japonica). J Comp Neurol 396: 141–157. 10.1002/(SICI)1096-9861(19980629)396:2 3.0.CO;2-0 CASPubMedWeb of Science®Google Scholar Balthazart J, Duperieux V, Asté N, Viglietti-Panzica C, Barrese M, Panzica GC. 1994. Afferent and efferent connections of the sexually dimorphic medial preoptic nucleus of the male quail revealed by in vitro transport of DiI. Cell Tissue Res 276: 455–475. 10.1007/BF00343944 CASPubMedWeb of Science®Google Scholar Beitz AJ. 1995. Periaqueductal gray. In: G Paxinos, editor. The rat nervous system. 2nd ed. San Diego: Academic Press. p 173–182. Google Scholar Berk ML, Smith SE, Karten HJ. 1993. Nucleus of the solitary tract and dorsal motor nucleus of the vagus nerve of the pigeon: localization of peptide and 5-hydroxytryptamine immunoreactive fibers. J Comp Neurol 338: 521–548. 10.1002/cne.903380404 CASPubMedWeb of Science®Google Scholar Bernard JF, Alden M, Besson JM. 1993. The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: a Phaseolus vulgaris leucoagglutinin (PHA-L) study in the rat. J Comp Neurol 329: 201–229. 10.1002/cne.903290205 CASPubMedWeb of Science®Google Scholar Bottjer SW, Roselinsky H, Tran NB. 1997. Sex differences in neuropeptide staining of song-control nuclei in zebra finch brains. Brain Behav Evol 50: 284–303. 10.1159/000113342 CASPubMedWeb of Science®Google Scholar Brauth SE, Reiner A. 1991. Calcitonin gene-related peptide is an evolutionary conserved marker within the amniote thalamo-telencephalic auditory pathway. J Comp Neurol 313: 227–239. 10.1002/cne.903130204 CASPubMedWeb of Science®Google Scholar Butler AB. 1994a. The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis. Brain Res Rev 19: 29–65. 10.1016/0165-0173(94)90003-5 CASPubMedWeb of Science®Google Scholar Butler AB. 1994b. The evolution of the dorsal pallium in the telencephalon of amniotes: cladistic analysis and a new hypothesis. Brain Res Rev 19: 66–101. 10.1016/0165-0173(94)90004-3 CASPubMedWeb of Science®Google Scholar Byers MR, O'Connor TA, Martin RF, Dong WK. 1986. Mesencephalic trigeminal sensory neurons of cat: axon pathways and structure of mechanoreceptive endings in the periodontal ligament. J Comp Neurol 250: 181–191. 10.1002/cne.902500205 CASPubMedWeb of Science®Google Scholar Cotter JR. 1976. Visual and nonvisual units recorded from the optic tectum of Gallus domesticus. Brain Behav Evol 13: 1–21. 10.1159/000123798 CASPubMedWeb of Science®Google Scholar Davies DC, Horn G. 1983. Putative cholinergic afferents to the chick hyperstriatum ventrale: a combined acetylcholinesterase and retrograde fluorescence labelling study. Neurosci Lett 38: 103–107. 10.1016/0304-3940(83)90024-1 PubMedWeb of Science®Google Scholar Davies DC, Csillag A, Székely AD, Kabai P. 1997. Efferent connections of the domestic chick archistriatum: A Phaseolus lectin anterograde tracing study. J Comp Neurol 389: 679–693. 10.1002/(SICI)1096-9861(19971229)389:4 3.0.CO;2-7 CASPubMedWeb of Science®Google Scholar Dubbeldam JL. 1998. Birds. In: R Nieuwnhuys, HJ ten Donkelaar, C Nicholson, editors. The central nervous system of vertebrates. Berlin: Springer-Verlag. p 1525–1636. 10.1007/978-3-642-18262-4_21 Google Scholar Dubbeldam JL, den Boer-Visser AM, Bout RG. 1997. Organization and efferent connections of the archistriatum of the mallard, Anas platyrhynchos L.: an anterograde and retrograde tracing study. J Comp Neurol 388: 632–657. 10.1002/(SICI)1096-9861(19971201)388:4 3.0.CO;2-N CASPubMedWeb of Science®Google Scholar Durand SE, Tepper JM, Cheng M-F. 1992. The shell region of the nucleus ovoidalis: a subdivision of the avian auditory thalamus. J Comp Neurol 323: 495–518. 10.1002/cne.903230404 CASPubMedWeb of Science®Google Scholar Fisher LA, Kikkawa DO, Rivier JE, Amara SG, Evans RM, Rosenfeld MG, Vale WW, Brown MR. 1983. Stimulation of noradrenergic sympathetic outflow by calcitonin gene-related peptide. Nature 305: 534–536. 10.1038/305534a0 CASPubMedWeb of Science®Google Scholar Font C, Hoogland PV, Van Der Zee EV, Pérez-Clausell J, Martínez-García F. 1995. The septal complex of the telencephalon of the lizard Podarcis hispanica. I. Chemoarchitectonical organization. J Comp Neurol 359: 117–130. 10.1002/cne.903590108 CASPubMedWeb of Science®Google Scholar Funke K. 1989. Somatosensory areas in the telencephalon of the pigeon. II. Spinal pathways and afferent connections. Exp Brain Res 76: 620–638. 10.1007/BF00248918 CASPubMedWeb of Science®Google Scholar Gamlin PDR, Cohen DH. 1986. A second ascending visual pathway from the optic tectum to the telencephalon in the pigeon. J Comp Neurol 250: 296–310. 10.1002/cne.902500304 CASPubMedWeb of Science®Google Scholar Gibson SJ, Polak JM, Bloom SR, Sabate IM, Mulderry PM, Ghatei MA, McGregor GP, Morrison JFB, Kelly JS, Evans RM, Rosendfeld MG. 1984. Calcitonin gene-related peptide (CGRP) immunoreactivity in the spinal cord of man and eight other species. J Neurosci 4: 3101–3111. 10.1523/JNEUROSCI.04-12-03101.1984 CASPubMedWeb of Science®Google Scholar Gottlieb S, Taylor A, Bosley MA. 1984. The distribution of afferent neurones in the mesencephalic nucleus of the fifth nerve in the cat. J Comp Neurol 228: 273–283. 10.1002/cne.902280212 CASPubMedWeb of Science®Google Scholar Harmann PK, Chung K, Briner RP, Westlund KN, Carlton SM. 1988. Calcitonin gene-related peptide (CGRP) in the human spinal cord: a light and electron microscopic analysis. J Comp Neurol 269: 371–380. 10.1002/cne.902690305 CASPubMedWeb of Science®Google Scholar Hökfelt T, Zhang X, Wiesenfeld-Hallin Z. 1994. Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 17: 22–30. 10.1016/0166-2236(94)90031-0 CASPubMedWeb of Science®Google Scholar Jerge CR. 1963. Organization and function of the trigeminal mesencephalic nucleus. J Neurophysiol 26: 379–392. 10.1152/jn.1963.26.3.379 CASPubMedWeb of Science®Google Scholar Karten HJ, Hodos W. 1967. A stereotaxic atlas of the brain of the pigeon (Columba livia). Baltimore: Johns Hopkins University Press.> Google Scholar Kawai Y, Takami K, Shiosaka S, Emson PC, Hillyard CJ, Girgis S, MacIntyre I, Tohyama M. 1985. Topographic localization of calcitonin gene-related peptide in the rat brain: an immunohistochemical analysis. Neuroscience 15: 747–763. 10.1016/0306-4522(85)90076-4 CASPubMedWeb of Science®Google Scholar Kitt CA, Brauth SE. 1981. Projections of the paleostriatum upon the midbrain tegmentum in the pigeon. Neuroscience 6: 1551–1566. 10.1016/0306-4522(81)90224-4 CASPubMedWeb of Science®Google Scholar Kitt CA, Brauth SE. 1986a. Telencephalic projections from the midbrain and isthmal cell groups in the pigeon. I. Locus coeruleus and subcoeruleus. J Comp Neurol 247: 69–91. 10.1002/cne.902470105 CASPubMedWeb of Science®Google Scholar Kitt CA, Brauth SE. 1986b. Telencephalic projections from the midbrain and isthmal cell groups in the pigeon. II. The nigral complex. J Comp Neurol 247: 92–110. 10.1002/cne.902470106 CASPubMedWeb of Science®Google Scholar Korzeniewska E and Güntürkün O. 1990. Sensory properties and afferents of the N. dorsolateralis posterior thalami of the pigeon. J Comp Neurol 292: 457–479. 10.1002/cne.902920311 CASPubMedWeb of Science®Google Scholar Kröner S, Güntürkün O. 1999. Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columbia livia): a retro- and anterograde pathway tracing study. J Comp Neurol 407: 228–260. 10.1002/(SICI)1096-9861(19990503)407:2 3.0.CO;2-2 CASPubMedWeb of Science®Google Scholar Kruger L, Mantyh PW, Sternini C, Brecha NC, Mantyh CR. 1988a. Calcitonin gene-related peptide (CGRP) in the rat central nervous system: patterns of immunoreactivity and receptor binding sites. Brain Res 463: 223–244. 10.1016/0006-8993(88)90395-2 CASPubMedWeb of Science®Google Scholar Kruger L, Sternini C, Brecha NC, Mantyh PW. 1988b. Distribution of calcitonin gene-related peptide immunoreactivity in relation to the rat central somatosensory projection. J Comp Neurol 273: 149–162. 10.1002/cne.902730203 CASPubMedWeb of Science®Google Scholar Kuenzel WJ, Masson M. 1988. A stereotaxic atlas of the brain of the chick (Gallus domesticus). Baltimore: The John Hopkins University Press. Google Scholar LeDoux JE, Ruggiero DA, Forest R, Stornetta R, Reiss DJ. 1987. Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. J Comp Neurol 264: 123–146. 10.1002/cne.902640110 CASPubMedWeb of Science®Google Scholar Linke R, De Lima AD, Schwegler H, Pape H-C. 1999. Direct synaptic connections of axons from superior colliculus with identified thalamo-amygdaloid projection neurons in the rat: possible substrates of a subcortical visual pathway to the amygdala. J Comp Neurol 403: 158–170. 10.1002/(SICI)1096-9861(19990111)403:2 3.0.CO;2-6 CASPubMedWeb of Science®Google Scholar Medina L, Reiner A. 1997. The efferent projections of the dorsal and ventral pallidal parts of the pigeon basal ganglia, studied with biotinylated dextran amines. Neuroscience 81: 773–802. 10.1016/S0306-4522(97)00204-2 CASPubMedWeb of Science®Google Scholar Metzger M, Jiang S, Wang J, Braun K. 1996. Organization of the dopaminergic innervation of forebrain areas relevant to learning: a combined immunohistochemical/retrograde tracing study in the domestic chick. J Comp Neurol 376: 1–27. 10.1002/(SICI)1096-9861(19961202)376:1 3.0.CO;2-7 CASPubMedWeb of Science®Google Scholar Metzger M, Jiang S, Braun K. 1998. Organization of the dorsocaudal neostriatal complex: a retrograde and anterograde tracing study in the domestic chick with special emphasis on pathways relevant to imprinting. J Comp Neurol 395: 380–404. 10.1002/(SICI)1096-9861(19980808)395:3 3.0.CO;2-Z CASPubMedWeb of Science®Google Scholar Minvielle S, Cressent M, Delehaye MC, Segond N, Milhaud G, Jullienne A, Moukhtar MS, Lasmoles F. 1987. Sequence and expression of the chicken calcitonin gene. FEBS Lett 223: 63–68. 10.1016/0014-5793(87)80510-0 CASPubMedWeb of Science®Google Scholar Morris HR, Panico M, Etienne T, Tippins J, Girgis SI, MacIntyre I. 1984. Isolation and characterization of human calcitonin gene-related peptide. Nature 308: 746–748. 10.1038/308746a0 CASPubMedWeb of Science®Google Scholar Nguyen KQ, Sills MA, Jacobowitz DM. 1986. Cardiovascular effects produced by microinjections of calcitonin gene-related peptide into the rat central amygdaloid nucleus. Peptides 7: 337–339. 10.1016/0196-9781(86)90233-0 CASPubMedWeb of Science®Google Scholar Petkó M, Sánta A. 1992. Distribution of calcitonin gene-related peptide immunoreactivity in the central nervous system of the frog, Rana esculenta. Cell Tissue Res 269: 525–534. 10.1007/BF00353907 PubMedWeb of Science®Google Scholar Price JL. 1995. Thalamus. In: G Paxinos, editor. The rat nervous system. 2nd ed. San Diego: Academic Press. p 629–648. Web of Science®Google Scholar Price JL, Russchen FT, Amaral DG. 1987. The limbic region. II: The amygdaloid complex. In: T Hökfelt, A Björklund, LW Swanson, editors. Handbook of chemical neuroanatomy. Vol. 5. Amsterdam: Elsevier. p 279–338. Web of Science®Google Scholar Puelles L, Kuwana E, Puelles E, Rubenstein JL. 1999. Comparison of the mammalian and avian telencephalon from the perspective of gene expression data. Eur J Morphol 37: 139–150. 10.1076/ejom.37.2.139.4756 CASPubMedWeb of Science®Google Scholar Rehkamper G, Zilles K. 1991. Parallel evolution in mammalian and avian brains: comparative cytoarchitectonic and cytochemical analysis. Cell Tissue Res 263: 3–28. 10.1007/BF00318396 CASPubMedWeb of Science®Google Scholar Reiner A, Karten HJ. 1985. Comparison of olfactory bulbs projections in pigeons and turtles. Brain Behav Evol 27: 11–27. 10.1159/000118717 CASPubMedWeb of Science®Google Scholar Reiner A, Medina L, Veenman CL. 1998. Structural and functional evolution of the basal ganglia in vertebrates. Brain Res Rev 28: 235–285. 10.1016/S0165-0173(98)00016-2 CASPubMedWeb of Science®Google Scholar Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM. 1983. Production of novel neuropeptide encoded by the calcitonin gene via tissue specific RNA processing. Nature 304: 129–135. 10.1038/304129a0 CASPubMedWeb of Science®Google Scholar Sakanaka M, Magari S, Emson PC, Hillyard CJ, Girgis SI, MacIntyre I, Tohyama M. 1985. The calcitonin gene-related peptide-containing fiber projection from the hypothalamus to the lateral septal area including its fine structures. Brain Res 344: 196–199. 10.1016/0006-8993(85)91210-7 CASPubMedWeb of Science®Google Scholar Saper CB, Loewy AD. 1980. Efferent connections of the parabrachial nucleus in the rat. Brain Res 197: 291–317. 10.1016/0006-8993(80)91117-8 CASPubMedWeb of Science®Google Scholar Scalia F, Winnans SS. 1975. The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. J Comp Neurol 161: 31–56. 10.1002/cne.901610105 CASPubMedWeb of Science®Google Scholar Shimada S, Shiosaka S, Emson PC, Hillyard CJ, Girgis S, MacIntyre I, Tohyama M. 1985a. Calcitonin gene-related peptidergic projection from the parabrachial area to the forebrain and diencephalon in the rat: an immunohistochemical analysis. Neuroscience 16: 607–616. 10.1016/0306-4522(85)90195-2 CASPubMedWeb of Science®Google Scholar Shimada S, Shiosaka S, Hillyard CJ, Girgis S, MacIntyre I, Emson PC, Tohyama M. 1985b. Calcitonin gene-related peptide projection from the ventromedial thalamic nucleus to the insular cortex: a combined retrograde transport and immunocytochemical study. Brain Res 344: 200–203. 10.1016/0006-8993(85)91211-9 PubMedWeb of Science®Google Scholar Skofitsch G, Jacobowitz DM. 1985. Calcitonin gene-related peptide: detailed immunohistochemical distribution in the central nervous system. Peptides 6: 721–745. 10.1016/0196-9781(85)90178-0 CASPubMedWeb of Science®Google Scholar Smith-Fernandez A, Pieau C, Repérant J, Boncinelli E, Wassef M. 1998. Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125: 2099–2111. PubMedWeb of Science®Google Scholar Striedter GF, Beydler S. 1997. Distribution of radial glia in the developing telencephalon of chicks. J Comp Neurol 387: 399–420. 10.1002/(SICI)1096-9861(19971027)387:3 3.0.CO;2-W CASPubMedWeb of Science®Google Scholar Striedter GF, Marchant TA, Beydler S. 1998. The "neostriatum" develops as part of the lateral pallium in birds. J Neurosci 18: 5839–5849. 10.1523/JNEUROSCI.18-15-05839.1998 CASPubMedWeb of Science®Google Scholar Sugimoto T, Itoh K, Mizuno N. 1988. Calcitonin gene-related peptide-like immunoreactivity in neuronal elements of the cat cerebellum. Brain Res 439: 147–154. 10.1016/0006-8993(88)91471-0 Google Scholar Sun N, Cassell MD. 1993. Intrinsic GABAergic neurons in the rat central extended amygdala. J Comp Neurol 330: 381–404. 10.1002/cne.903300308 CASPubMedWeb of Science®Google Scholar Swanson LW, Petrovich GD. 1998. What is the amygdala? Trends Neurosci 21: 323–331. 10.1016/S0166-2236(98)01265-X CASPubMedWeb of Science®Google Scholar Urban L, Thompson SWN, Dray A. 1994. Modulation of spinal excitability: co-operation between neurokinin and excitatory amino acid neurotransmitters. Trends Neurosci 17: 432–438. 10.1016/0166-2236(94)90018-3 CASPubMedWeb of Science®Google Scholar Veenman CL, Reiner A. 1994. The distribution of GABA-containing perikarya, fibres and terminals in the forebrain and midbrain of pigeons, with particular reference to the basal ganglia and its projection targets. J Comp Neurol 339: 209–250. 10.1002/cne.903390205 CASPubMedWeb of Science®Google Scholar Veenman CL, Wild JM, Reiner A. 1995. Organization of the avian corticostriatal projection system: a retrograde and anterograde pathway tracing study in pigeons. J Comp Neurol 354: 87–126. 10.1002/cne.903540108 CASPubMedWeb of Science®Google Scholar Veenman CL, Medina L, Reiner A. 1997. Avian homologues of mammalian intralaminar, mediodorsal and midline thalamic nuclei: immunohistochemical and hodological evidence. Brain Behav Evol 49: 78–98. 10.1159/000112983 CASPubMedWeb of Science®Google Scholar Waldmann C, Güntürkün O. 1993. The dopaminergic innervation of the pigeon caudolateral forebrain: immunocytochemical evidence for a "prefrontal cortex" in birds? Brain Res 600: 225–234. 10.1016/0006-8993(93)91377-5 CASPubMedWeb of Science®Google Scholar Wild JM. 1987a. Thalamic projections to the paleostriatum and neostriatum in the pigeon (Columba livia). Neuroscience 20: 305–327. 10.1016/0306-4522(87)90022-4 CASPubMedWeb of Science®Google Scholar Wild JM. 1987b. The avian somatosensory system: connections of regions of body representation in the forebrain of the pigeon. Brain Res 412: 205–223. 10.1016/0006-8993(87)91127-9 CASPubMedWeb of Science®Google Scholar Wild JM. 1989. Avian somatosensory system: II. Ascending projections of the dorsal column and external cuneate nuclei in the pigeon. J Comp Neurol 287: 1–18. 10.1002/cne.902870102 CASPubMedWeb of Science®Google Scholar Wild JM, Zeigler HP. 1996. Central projections and somatotopic organization of trigeminal primary afferents in pigeon (Columba livia). J Comp Neurol 368: 136–152. 10.1002/(SICI)1096-9861(19960422)368:1 3.0.CO;2-4 CASPubMedWeb of Science®Google Scholar Wild JM, Arends JJA, Zeigler HP. 1990. Projections of the parabrachial nucleus in the pigeon (Columba livia). J Comp Neurol 293: 499–523. 10.1002/cne.902930402 CASPubMedWeb of Science®Google Scholar Wild JM, Karten HJ, Frost BJ. 1993. Connections of the auditory forebrain in the pigeon. J Comp Neurol 337: 32–62. 10.1002/cne.903370103 CASPubMedWeb of Science®Google Scholar Woodbury CJ. 1992. Physiological studies of cutaneous inputs to dorsal horn laminae I-IV of adult chickens. J Neurophysiol 67: 241–254. CASPubMedWeb of Science®Google Scholar Yamasaki DG, Krauthamer GM, Rhoades RW. 1986. Superior collicular projection to intralaminar thalamus in rat. Brain Res 378: 223–233. 10.1016/0006-8993(86)90925-X CASPubMedWeb of Science®Google Scholar Yang Y, Ozawa H, Lu H, Yuri K, Hayashi S, Nihonyanagi K, Kawata M. 1998. Immunocytochemical analysis of sex differences in calcitonin gene-related peptide in the rat dorsal root ganglion, with especial references to estrogen and its receptor. Brain Res 791: 35–42. 10.1016/S0006-8993(98)00021-3 CASPubMedWeb of Science®Google Scholar Yasui Y, Saper CB, Cechetto DF. 1989. Calcitonin gene-related peptide immunoreactivity in the visceral sensory cortex, thalamus and related pathways in the rat. J Comp Neurol 290: 487–501. 10.1002/cne.902900404 CASPubMedWeb of Science®Google Scholar Yasui Y, Saper CB, Cechetto DF. 1991. Calcitonin gene-related peptide immunoreactive projections from the thalamus to the striatum amygdala in the rat. J Comp Neurol 308: 293–310 10.1002/cne.903080212 PubMedWeb of Science®Google Scholar Citing Literature Volume421, Issue412 June 2000Pages 515-532 ReferencesRelatedInformation

Referência(s)