Artigo Acesso aberto Revisado por pares

Role of IKKγ/NEMO in Assembly of the IκB Kinase Complex

2001; Elsevier BV; Volume: 276; Issue: 6 Linguagem: Inglês

10.1074/jbc.m008353200

ISSN

1083-351X

Autores

Xiaohua Li, Xiaoqun Fang, Richard B. Gaynor,

Tópico(s)

Cytokine Signaling Pathways and Interactions

Resumo

IKKγ/NEMO is a protein that is critical for the assembly of the high molecular weight IκB kinase (IKK) complex. To investigate the role of IKKγ/NEMO in the assembly of the IKK complex, we conducted a series of experiments in which the chromatographic distribution of extracts prepared from cells transiently expressing epitope-tagged IKKγ/NEMO and the IKKs were examined. When expressed alone following transfection, IKKα and IKKβ were present in low molecular weight complexes migrating between 200 and 400 kDa. However, when coexpressed with IKKγ/NEMO, both IKKα and IKKβ migrated at ∼600 kDa which was similar to the previously described IKK complex that is activated by cytokines such as tumor necrosis factor-α. When either IKKα or IKKβ was expressed alone with IKKγ/NEMO, IKKβ but not IKKα migrated in the higher molecular weight IKK complex. Constitutively active or inactive forms of IKKβ were both incorporated into the high molecular weight IKK complex in the presence of IKKγ/NEMO. The amino-terminal region of IKKγ/NEMO, which interacts directly with IKKβ, was required for formation of the high molecular weight IKK complex and for stimulation of IKKβ kinase activity. These results suggest that recruitment of the IKKs into a high molecular complex by IKKγ/NEMO is a crucial step involved in IKK function. IKKγ/NEMO is a protein that is critical for the assembly of the high molecular weight IκB kinase (IKK) complex. To investigate the role of IKKγ/NEMO in the assembly of the IKK complex, we conducted a series of experiments in which the chromatographic distribution of extracts prepared from cells transiently expressing epitope-tagged IKKγ/NEMO and the IKKs were examined. When expressed alone following transfection, IKKα and IKKβ were present in low molecular weight complexes migrating between 200 and 400 kDa. However, when coexpressed with IKKγ/NEMO, both IKKα and IKKβ migrated at ∼600 kDa which was similar to the previously described IKK complex that is activated by cytokines such as tumor necrosis factor-α. When either IKKα or IKKβ was expressed alone with IKKγ/NEMO, IKKβ but not IKKα migrated in the higher molecular weight IKK complex. Constitutively active or inactive forms of IKKβ were both incorporated into the high molecular weight IKK complex in the presence of IKKγ/NEMO. The amino-terminal region of IKKγ/NEMO, which interacts directly with IKKβ, was required for formation of the high molecular weight IKK complex and for stimulation of IKKβ kinase activity. These results suggest that recruitment of the IKKs into a high molecular complex by IKKγ/NEMO is a crucial step involved in IKK function. tumor necrosis factor-α IκB kinase polymerase chain reaction glutathione S-transferase cytomegalovirus hemagglutinin amino acid cAMP-responsive element-binding protein The NF-κB proteins are a family of transcription factors that regulate the expression of a variety of cellular genes involved in the control of the immune and the inflammatory response (1Baeuerle P.A. Baltimore D. Cell. 1996; 87: 13-20Abstract Full Text Full Text PDF PubMed Scopus (2931) Google Scholar, 2Baldwin A.S. Annu. Rev. Immunol. 1996; 14: 649-681Crossref PubMed Scopus (5578) Google Scholar, 3Barnes P.J. Int. J. Biochem. Cell Biol. 1997; 29: 867-870Crossref PubMed Scopus (294) Google Scholar, 4Ghosh S. May M.J. Kopp E.B. Annu. Rev. Immunol. 1998; 16: 225-260Crossref PubMed Scopus (4609) Google Scholar). NF-κB is sequestered in the cytoplasm of most cells where it is bound to a family of inhibitory proteins known as IκB (2Baldwin A.S. Annu. Rev. Immunol. 1996; 14: 649-681Crossref PubMed Scopus (5578) Google Scholar, 5Beg A.A. Ruben S.M. Scheinman R.I. Haskill S. Rosen C.A. Baldwin Jr., A.S. Genes Dev. 1992; 6: 1899-1913Crossref PubMed Scopus (612) Google Scholar, 6Beg A.A. Finco T.S. Nantermet P.V. Baldwin A.S.J. Mol. Cell. Biol. 1993; 13: 3301-3310Crossref PubMed Google Scholar). A variety of agents including the cytokines interleukin-1 and TNFα,1 endotoxin, double-stranded RNA, and the viral transactivator Tax activate the NF-κB pathway (4Ghosh S. May M.J. Kopp E.B. Annu. Rev. Immunol. 1998; 16: 225-260Crossref PubMed Scopus (4609) Google Scholar, 7Li X.-H. Gaynor R.B. Gene Expr. 1999; 7: 233-245PubMed Google Scholar, 8Pahl H.L. Oncogene. 1999; 18: 6853-6866Crossref PubMed Scopus (3448) Google Scholar, 9Karin M. Oncogene. 1999; 18: 6867-6874Crossref PubMed Scopus (1007) Google Scholar, 10Karin M. Ben-Neriah Y. Annu. Rev. Immunol. 2000; 18: 621-663Crossref PubMed Scopus (4084) Google Scholar, 11Li X.-H. Gaynor R.B. AIDS Res. Human Retroviruses. 2000; 16: 1583-1590Crossref PubMed Scopus (34) Google Scholar). These agents stimulate upstream kinases that result in the activation of two related IκB kinases, IKKα and IKKβ (9Karin M. Oncogene. 1999; 18: 6867-6874Crossref PubMed Scopus (1007) Google Scholar, 12Mercurio F. Zhu H. Murray B.W. Shevchenko A. Bennett B.L. Li J. Young D.B. Barbosa M. Mann M. Science. 1997; 278: 860-866Crossref PubMed Scopus (1853) Google Scholar, 13Woronicz J.D. Gao X. Cao Z. Rothe M. Goeddel D.V. Science. 1997; 278: 866-869Crossref PubMed Scopus (1068) Google Scholar, 14Zandi E. Rothwarf D.M. Delhase M. Hayakawa M. Karin M. Cell. 1997; 91: 243-252Abstract Full Text Full Text PDF PubMed Scopus (1589) Google Scholar, 15Regnier C.H. Song H.Y. Gao X. Goeddel D.V. Cao Z. Rothe M. Cell. 1997; 90: 373-383Abstract Full Text Full Text PDF PubMed Scopus (1072) Google Scholar, 16DiDonato J.A. Hayakawa M. Rothwarf D.M. Zandi E. Karin M. Nature. 1997; 388: 548-554Crossref PubMed Scopus (1913) Google Scholar). IKK phosphorylation of amino-terminal serine residues in both IκBα and IκBβ results in their ubiquitination via interaction with β-TrCP and subsequent degradation by the proteasome (10Karin M. Ben-Neriah Y. Annu. Rev. Immunol. 2000; 18: 621-663Crossref PubMed Scopus (4084) Google Scholar, 17Brockman J.A. Scherer D.C. MsKinsey T.A. Hall S.M. Qi X. Lee W.Y. Ballard D.W. Mol. Cell. Biol. 1995; 15: 2809-2818Crossref PubMed Google Scholar, 18Brown K. Gerstberger S. Carlson L. Fransozo G. Siebenlist U. Science. 1995; 267: 1485-1488Crossref PubMed Scopus (1315) Google Scholar, 19Traenckner E.B.M. Pahl H.L. Henkel T. Schmidt K.N. Wilk S. Baeuerle P.A. EMBO J. 1995; 14: 2876-2883Crossref PubMed Scopus (933) Google Scholar, 20Whiteside S.T. Ernst M.K. LeBail O. Laurent-Winter C. Rice N. Israel A. Mol. Cell. Biol. 1995; 15: 5339-5345Crossref PubMed Google Scholar, 21DiDonato J. Mercurio F. Rosette C. Wu-Li J. Suyang H. Ghosh S. Karin M. Mol. Cell. Biol. 1996; 16: 1295-1304Crossref PubMed Google Scholar, 22Chen Z. Hagler J. Palombella V.J. Melandri F. Scherer D. Ballard D. Maniatis T. Genes Dev. 1995; 9: 1586-1597Crossref PubMed Scopus (1170) Google Scholar, 23Chen Z.J. Parent L. Maniatis T. Cell. 1996; 84: 853-862Abstract Full Text Full Text PDF PubMed Scopus (870) Google Scholar, 24Yaron A. Hatzubai A. Davis M. Lavon I. Amit S. Manning A.M. Andersen J.S. Mann M. Mercurio F. Ben-Neriah Y. Nature. 1998; 396: 590-594Crossref PubMed Scopus (571) Google Scholar, 25Winston J.T. Strack P. Beer-Romero P. Chu C. Elledge S.J. Harper J.W. Genes Dev. 1999; 13: 270-283Crossref PubMed Scopus (811) Google Scholar, 26Spencer E. Jiang J. Chen Z.J. Genes Dev. 1999; 13: 284-294Crossref PubMed Scopus (374) Google Scholar). Following IκB degradation, the NF-κB proteins translocate from the cytoplasm to the nucleus where they activate the expression of specific cellular genes (8Pahl H.L. Oncogene. 1999; 18: 6853-6866Crossref PubMed Scopus (3448) Google Scholar). Both IKKα and IKKβ are components of a high molecular weight complex migrating between 600 and 900 kDa that phosphorylates the IκB proteins (12Mercurio F. Zhu H. Murray B.W. Shevchenko A. Bennett B.L. Li J. Young D.B. Barbosa M. Mann M. Science. 1997; 278: 860-866Crossref PubMed Scopus (1853) Google Scholar, 14Zandi E. Rothwarf D.M. Delhase M. Hayakawa M. Karin M. Cell. 1997; 91: 243-252Abstract Full Text Full Text PDF PubMed Scopus (1589) Google Scholar, 23Chen Z.J. Parent L. Maniatis T. Cell. 1996; 84: 853-862Abstract Full Text Full Text PDF PubMed Scopus (870) Google Scholar, 27Lee F.S. Hagler J. Chen Z.J. Maniatis T. Cell. 1997; 88: 213-222Abstract Full Text Full Text PDF PubMed Scopus (660) Google Scholar, 28Yamaoka S. Courtois G. Bessia C. Whiteside S.T. Weil R. Agou F. Kirk H.E. Kay R.J. Israel A. Cell. 1998; 93: 1231-1240Abstract Full Text Full Text PDF PubMed Scopus (950) Google Scholar, 29Mercurio F. Murray B.W. Shevchenko A. Bennett B.L. Young D.B. Li J.W. Pascual G. Motiwala A. Zhu H. Mann M. Manning A.M. Mol. Cell. Biol. 1999; 19: 1526-1538Crossref PubMed Google Scholar, 30Rothwarf D.M. Zandi E. Natoli G. Karin M. Nature. 1998; 395: 297-300Crossref PubMed Scopus (853) Google Scholar). These kinases have 52% amino acid identity and a similar domain structure that includes amino-terminal kinase, leucine zipper, and helix-loop-helix motifs (9Karin M. Oncogene. 1999; 18: 6867-6874Crossref PubMed Scopus (1007) Google Scholar, 12Mercurio F. Zhu H. Murray B.W. Shevchenko A. Bennett B.L. Li J. Young D.B. Barbosa M. Mann M. Science. 1997; 278: 860-866Crossref PubMed Scopus (1853) Google Scholar, 13Woronicz J.D. Gao X. Cao Z. Rothe M. Goeddel D.V. Science. 1997; 278: 866-869Crossref PubMed Scopus (1068) Google Scholar, 14Zandi E. Rothwarf D.M. Delhase M. Hayakawa M. Karin M. Cell. 1997; 91: 243-252Abstract Full Text Full Text PDF PubMed Scopus (1589) Google Scholar, 15Regnier C.H. Song H.Y. Gao X. Goeddel D.V. Cao Z. Rothe M. Cell. 1997; 90: 373-383Abstract Full Text Full Text PDF PubMed Scopus (1072) Google Scholar, 16DiDonato J.A. Hayakawa M. Rothwarf D.M. Zandi E. Karin M. Nature. 1997; 388: 548-554Crossref PubMed Scopus (1913) Google Scholar). IKKα and IKKβ can both homodimerize and heterodimerize, and this process is critical for their kinase activity. Although these kinases have a number of similarities, IKKβ has at least a 20-fold higher level of kinase activity for IκB than does IKKα (12Mercurio F. Zhu H. Murray B.W. Shevchenko A. Bennett B.L. Li J. Young D.B. Barbosa M. Mann M. Science. 1997; 278: 860-866Crossref PubMed Scopus (1853) Google Scholar, 29Mercurio F. Murray B.W. Shevchenko A. Bennett B.L. Young D.B. Li J.W. Pascual G. Motiwala A. Zhu H. Mann M. Manning A.M. Mol. Cell. Biol. 1999; 19: 1526-1538Crossref PubMed Google Scholar, 31Lee F.S. Peters R.T. Dang L.C. Maniatis T. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 9319-9324Crossref PubMed Scopus (356) Google Scholar, 32Nakano H. Shindo M. Sakon S. Nishinaka S. Mihara M. Yagita H. Okumura K. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 3537-3542Crossref PubMed Scopus (471) Google Scholar, 33Zandi E. Chen Y. Karin M. Science. 1998; 281: 1360-1363Crossref PubMed Google Scholar, 34Kwak Y.T. Guo J. Shen J. Gaynor R.B. J. Biol. Chem. 2000; 275: 14752-14759Abstract Full Text Full Text PDF PubMed Scopus (44) Google Scholar, 35Yin M.-J. Christerson L.B. Yamamoto Y. Kwak Y.-T. Xu S. Mercurio F. Barbosa M. Cobb M.H. Gaynor R.B. Cell. 1998; 93: 875-884Abstract Full Text Full Text PDF PubMed Scopus (232) Google Scholar). The mitogen-activated protein kinase kinase family members NIK (36Malinin N.L. Boldin M.P. Kovalenko A.V. Wallach D. Nature. 1997; 385: 540-548Crossref PubMed Scopus (1164) Google Scholar, 37Ling L. Cao Z. Goeddel D.V. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 3792-3797Crossref PubMed Scopus (450) Google Scholar) and MEKK1 (27Lee F.S. Hagler J. Chen Z.J. Maniatis T. Cell. 1997; 88: 213-222Abstract Full Text Full Text PDF PubMed Scopus (660) Google Scholar, 31Lee F.S. Peters R.T. Dang L.C. Maniatis T. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 9319-9324Crossref PubMed Scopus (356) Google Scholar, 32Nakano H. Shindo M. Sakon S. Nishinaka S. Mihara M. Yagita H. Okumura K. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 3537-3542Crossref PubMed Scopus (471) Google Scholar, 35Yin M.-J. Christerson L.B. Yamamoto Y. Kwak Y.-T. Xu S. Mercurio F. Barbosa M. Cobb M.H. Gaynor R.B. Cell. 1998; 93: 875-884Abstract Full Text Full Text PDF PubMed Scopus (232) Google Scholar) can stimulate IKK activity via phosphorylation of serine residues in their activation loop. Mutation of serine residues to alanine in the activation loop at positions 176 and 180 in IKKα and positions 177 and 181 in IKKβ inactivates IKK kinase activity, whereas replacement of these serine residues with glutamates results in the generation of constitutively active kinases (12Mercurio F. Zhu H. Murray B.W. Shevchenko A. Bennett B.L. Li J. Young D.B. Barbosa M. Mann M. Science. 1997; 278: 860-866Crossref PubMed Scopus (1853) Google Scholar, 29Mercurio F. Murray B.W. Shevchenko A. Bennett B.L. Young D.B. Li J.W. Pascual G. Motiwala A. Zhu H. Mann M. Manning A.M. Mol. Cell. Biol. 1999; 19: 1526-1538Crossref PubMed Google Scholar, 38Delhase M. Hayakawa M. Chen Y. Karin M. Science. 1999; 284: 309-313Crossref PubMed Scopus (752) Google Scholar, 39Yamamoto Y. Yin M.J. Gaynor R.B. Mol. Cell. Biol. 2000; 20: 3655-3666Crossref PubMed Scopus (52) Google Scholar). Whether phosphorylation of IKKβ by either NIK or MEKK1 is the critical event that leads to stimulation of IKKβ kinase activity or whether other mechanisms such as IKKα phosphorylation of IKKβ (39Yamamoto Y. Yin M.J. Gaynor R.B. Mol. Cell. Biol. 2000; 20: 3655-3666Crossref PubMed Scopus (52) Google Scholar, 58O'Mahony A. Lin X. Geleziunas R. Greene W.C. Mol. Cell. Biol. 2000; 20: 1170-1178Crossref PubMed Scopus (102) Google Scholar) or IKKβ autophosphorylation (38Delhase M. Hayakawa M. Chen Y. Karin M. Science. 1999; 284: 309-313Crossref PubMed Scopus (752) Google Scholar) regulate this process remains to be determined. In addition to IKKα and IKKβ, there are additional components of the IKK complex. A protein known as IKKγ/NEMO has also been shown to be a critical component of the IKK complex (28Yamaoka S. Courtois G. Bessia C. Whiteside S.T. Weil R. Agou F. Kirk H.E. Kay R.J. Israel A. Cell. 1998; 93: 1231-1240Abstract Full Text Full Text PDF PubMed Scopus (950) Google Scholar, 29Mercurio F. Murray B.W. Shevchenko A. Bennett B.L. Young D.B. Li J.W. Pascual G. Motiwala A. Zhu H. Mann M. Manning A.M. Mol. Cell. Biol. 1999; 19: 1526-1538Crossref PubMed Google Scholar, 30Rothwarf D.M. Zandi E. Natoli G. Karin M. Nature. 1998; 395: 297-300Crossref PubMed Scopus (853) Google Scholar). This 48-kDa glutamine-rich protein contains a leucine zipper domain and two coiled-coil motifs but has no known enzymatic activity. IKKγ/NEMO was first identified in a genetic complementation assay as a cellular factor that was able to restore NF-κB activation to cells that did not respond to a variety of activators of this pathway (28Yamaoka S. Courtois G. Bessia C. Whiteside S.T. Weil R. Agou F. Kirk H.E. Kay R.J. Israel A. Cell. 1998; 93: 1231-1240Abstract Full Text Full Text PDF PubMed Scopus (950) Google Scholar). IKKγ/NEMO was also isolated independently as a component of the high molecular weight IKK complex (29Mercurio F. Murray B.W. Shevchenko A. Bennett B.L. Young D.B. Li J.W. Pascual G. Motiwala A. Zhu H. Mann M. Manning A.M. Mol. Cell. Biol. 1999; 19: 1526-1538Crossref PubMed Google Scholar, 30Rothwarf D.M. Zandi E. Natoli G. Karin M. Nature. 1998; 395: 297-300Crossref PubMed Scopus (853) Google Scholar) and as a factor, designated FIP-3, that binds to the adenovirus E3 protein and inhibits the cytolytic effects of TNFα (40Li Y. Kang J. Friedman J. Tarassishin L. Ye J. Kovalenko A. Wallach D. Horwitz M.S. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 1042-1047Crossref PubMed Scopus (156) Google Scholar). Cells lacking IKKγ/NEMO are unable to form the high molecular weight IKK complex or respond to cytokines that activate this pathway (28Yamaoka S. Courtois G. Bessia C. Whiteside S.T. Weil R. Agou F. Kirk H.E. Kay R.J. Israel A. Cell. 1998; 93: 1231-1240Abstract Full Text Full Text PDF PubMed Scopus (950) Google Scholar, 29Mercurio F. Murray B.W. Shevchenko A. Bennett B.L. Young D.B. Li J.W. Pascual G. Motiwala A. Zhu H. Mann M. Manning A.M. Mol. Cell. Biol. 1999; 19: 1526-1538Crossref PubMed Google Scholar, 30Rothwarf D.M. Zandi E. Natoli G. Karin M. Nature. 1998; 395: 297-300Crossref PubMed Scopus (853) Google Scholar, 41Courtois G. Whiteside S.T. Sibley C.H. Israel A. Mol. Cell. Biol. 1997; 17: 1441-14449Crossref PubMed Google Scholar, 42Harhaj E.W. Good L. Xiao G. Uhlik M. Cvijic M.E. Rivera-Walsh I. Sun S.C. Oncogene. 2000; 19: 1448-1456Crossref PubMed Scopus (92) Google Scholar). Mutagenesis of the IKKγ/NEMO indicates that several distinct domains are critical for its function (29Mercurio F. Murray B.W. Shevchenko A. Bennett B.L. Young D.B. Li J.W. Pascual G. Motiwala A. Zhu H. Mann M. Manning A.M. Mol. Cell. Biol. 1999; 19: 1526-1538Crossref PubMed Google Scholar, 30Rothwarf D.M. Zandi E. Natoli G. Karin M. Nature. 1998; 395: 297-300Crossref PubMed Scopus (853) Google Scholar, 43Chu Z.-L. Shin Y.-A. Yang J.-M. DiDonato J.A. Ballard D.W. J. Biol. Chem. 1999; 274: 15297-15300Abstract Full Text Full Text PDF PubMed Scopus (160) Google Scholar). These include the amino-terminal 100 amino acids that mediate the direct interactions of IKKγ/NEMO with IKKβ, the carboxyl terminus which likely functions in the recruitment of upstream kinases to the IKK complex, and a coiled-coil domain that mediates oligomerization of IKKγ/NEMO. Although IKKβ preferentially binds to IKKγ/NEMO as compared with IKKα (28Yamaoka S. Courtois G. Bessia C. Whiteside S.T. Weil R. Agou F. Kirk H.E. Kay R.J. Israel A. Cell. 1998; 93: 1231-1240Abstract Full Text Full Text PDF PubMed Scopus (950) Google Scholar, 30Rothwarf D.M. Zandi E. Natoli G. Karin M. Nature. 1998; 395: 297-300Crossref PubMed Scopus (853) Google Scholar), IKKα has also been found to bind to IKKγ/NEMO using extracts prepared from IKKβ knock-out cells (44Tanaka M. Fuentes M.E. Yamaguchi K. Durnin M.H. Dalrymple S.A. Hardy K.L. Goeddel D.V. Immunity. 1999; 10: 421-429Abstract Full Text Full Text PDF PubMed Scopus (495) Google Scholar). The kinase RIP which is recruited to the p55 TNF receptor following TNFα treatment binds to IKKγ/NEMO (45Zhang S.Q. Kovalenko A. Cantarella G. Wallach D. Immunity. 2000; 12: 301-311Abstract Full Text Full Text PDF PubMed Scopus (393) Google Scholar). The recruitment of IKKγ/NEMO by RIP leads to the subsequent association of IKKα and IKKβ. Another protein, A20 which functions to inhibit NF-κB activation, also binds to IKKγ/NEMO and may serve to down-regulate TNFα signaling pathway (45Zhang S.Q. Kovalenko A. Cantarella G. Wallach D. Immunity. 2000; 12: 301-311Abstract Full Text Full Text PDF PubMed Scopus (393) Google Scholar). Finally, the human T-cell lymphotrophic virus, type I, Tax protein can bind to IKKγ/NEMO to facilitate the activation of the IKKs (43Chu Z.-L. Shin Y.-A. Yang J.-M. DiDonato J.A. Ballard D.W. J. Biol. Chem. 1999; 274: 15297-15300Abstract Full Text Full Text PDF PubMed Scopus (160) Google Scholar, 46Harhaj E.W. Sun S.C. J. Biol. Chem. 1999; 274: 22911-22914Abstract Full Text Full Text PDF PubMed Scopus (199) Google Scholar, 47Jin D.Y. Giordano V. Kibler K.V. Nakano H. Jeang K.T. J. Biol. Chem. 1999; 274: 17402-17405Abstract Full Text Full Text PDF PubMed Scopus (198) Google Scholar). These results indicate that IKKγ/NEMO may serve to link various activators of the NF-κB pathway to the IKK complex. Recent murine gene disruption studies (48Makris C. Godfrey V.L. Krahn-Senftleben G. Takahashi T. Roberts J.L. Schwarz A.T. Feng L. Johnson R.S. Karin M. Mol. Cell. 2000; 5: 969-979Abstract Full Text Full Text PDF PubMed Scopus (339) Google Scholar, 49Rudolph D. Yeh W.C. Wakeham A. Rudolph B. Nallainathan D. Potter J. Elia A.J. Mak T.W. Genes Dev. 2000; 14: 854-862PubMed Google Scholar, 50Schmidt-Supprian M. Bloch W. Courtois G. Addicks K. Israel A. Rajewsky K. Pasparakis M. Mol. Cell. 2000; 5: 981-992Abstract Full Text Full Text PDF PubMed Scopus (374) Google Scholar) and genetic analysis of families lacking IKKγ/NEMO (51Smahi A. Courtois G. Vabres P. Yamaoka S. Heuertz S. Munnich A. Israel A. Heiss N.S. Klauck S.M. Kioschis P. Wiemann S. Poustka A. Esposito T. Bardaro T. Gianfrancesco F. Ciccodicola A. D'Urso M. Woffendin H. Jakins T. Donnai D. Stewart H. Kenwrick S.J. Aradhya S. Yamagata T. Levy M. Lewis R.A. Nature. 2000; 405: 466-472Crossref PubMed Scopus (607) Google Scholar) demonstrate its essential role in regulating the anti-apoptotic and inflammatory properties of the NF-κB pathway. Mutations in theIKKγ/NEMO gene on the X chromosome are the cause of incontinentia pigmenti, an X-linked dominant genetic disorder of the skin that is lethal in males (51Smahi A. Courtois G. Vabres P. Yamaoka S. Heuertz S. Munnich A. Israel A. Heiss N.S. Klauck S.M. Kioschis P. Wiemann S. Poustka A. Esposito T. Bardaro T. Gianfrancesco F. Ciccodicola A. D'Urso M. Woffendin H. Jakins T. Donnai D. Stewart H. Kenwrick S.J. Aradhya S. Yamagata T. Levy M. Lewis R.A. Nature. 2000; 405: 466-472Crossref PubMed Scopus (607) Google Scholar). Gene disruption studies of the IKKγ/NEMO gene demonstrate that although male mice die in utero, heterozygous female mice develop granulocytic infiltration and both hyperproliferation and increased apoptosis of keratinocytes similar to that seen in incontinentia pigmenti (48Makris C. Godfrey V.L. Krahn-Senftleben G. Takahashi T. Roberts J.L. Schwarz A.T. Feng L. Johnson R.S. Karin M. Mol. Cell. 2000; 5: 969-979Abstract Full Text Full Text PDF PubMed Scopus (339) Google Scholar, 50Schmidt-Supprian M. Bloch W. Courtois G. Addicks K. Israel A. Rajewsky K. Pasparakis M. Mol. Cell. 2000; 5: 981-992Abstract Full Text Full Text PDF PubMed Scopus (374) Google Scholar). Homozygous deletion of IKKγ/NEMO leads to embryonic lethality due to massive hepatic apoptosis (48Makris C. Godfrey V.L. Krahn-Senftleben G. Takahashi T. Roberts J.L. Schwarz A.T. Feng L. Johnson R.S. Karin M. Mol. Cell. 2000; 5: 969-979Abstract Full Text Full Text PDF PubMed Scopus (339) Google Scholar, 49Rudolph D. Yeh W.C. Wakeham A. Rudolph B. Nallainathan D. Potter J. Elia A.J. Mak T.W. Genes Dev. 2000; 14: 854-862PubMed Google Scholar). Mouse embryo fibroblasts isolated from these mice exhibit extreme defects in stimulating the NF-κB pathway in response to a variety of well characterized activators of this pathway (48Makris C. Godfrey V.L. Krahn-Senftleben G. Takahashi T. Roberts J.L. Schwarz A.T. Feng L. Johnson R.S. Karin M. Mol. Cell. 2000; 5: 969-979Abstract Full Text Full Text PDF PubMed Scopus (339) Google Scholar, 49Rudolph D. Yeh W.C. Wakeham A. Rudolph B. Nallainathan D. Potter J. Elia A.J. Mak T.W. Genes Dev. 2000; 14: 854-862PubMed Google Scholar, 50Schmidt-Supprian M. Bloch W. Courtois G. Addicks K. Israel A. Rajewsky K. Pasparakis M. Mol. Cell. 2000; 5: 981-992Abstract Full Text Full Text PDF PubMed Scopus (374) Google Scholar). However, the mechanism by which IKKγ/NEMO activates the NF-κB pathway remains to be determined. In the current study, we utilized a biochemical approach to address the function of IKKγ/NEMO in the recruitment of IKKα and IKKβ into the IKK complex. We demonstrated that the amino terminus of IKKγ/NEMO that interacts with IKKβ is crucial for formation of the high molecular weight IKK complex. Moreover, we found that IKKγ/NEMO stimulates the ability of IKKβ but not IKKα to phosphorylate IκBα. These results further establish that IKKγ/NEMO association with the IKK complex is critical for stimulation of IKK kinase activity. The murine IKKγ/NEMO coding sequence (28Yamaoka S. Courtois G. Bessia C. Whiteside S.T. Weil R. Agou F. Kirk H.E. Kay R.J. Israel A. Cell. 1998; 93: 1231-1240Abstract Full Text Full Text PDF PubMed Scopus (950) Google Scholar) (GenBankTM accession number AF069542-1) was obtained by PCR using a mouse spleen cDNA library. Two oligonucleotide primers complementary to the 5′- and 3′-coding regions of mouse IKKγ/NEMO were used in PCR assays. The PCR product was cloned into the expression vector pCMV5/Myc1 fusing the Myc tag to the 5′ of IKKγ/NEMO sequence. An amino-terminal deletion that contains amino acid residues 101–412 of IKKγ/NEMO was constructed by PCR followed by cloning of the product into pCMV5/Myc1. The carboxyl-terminal deletions of IKKγ/NEMO containing either amino acids 1–270 or 1–312 were constructed utilizing PCR to generate these fragments followed by cloning into pCMV5/Myc1. The leucine zipper mutations were constructed by substitution of leucine residues at positions 315, 322, and 329 with methionine in the IKKγ/NEMO gene cloned into pCMV5/Myc1. Wild-type and mutant IKKβ were cloned into plasmid pCMVFl such that the FLAG tag was fused to the 5′ end of IKKβ (12Mercurio F. Zhu H. Murray B.W. Shevchenko A. Bennett B.L. Li J. Young D.B. Barbosa M. Mann M. Science. 1997; 278: 860-866Crossref PubMed Scopus (1853) Google Scholar,35Yin M.-J. Christerson L.B. Yamamoto Y. Kwak Y.-T. Xu S. Mercurio F. Barbosa M. Cobb M.H. Gaynor R.B. Cell. 1998; 93: 875-884Abstract Full Text Full Text PDF PubMed Scopus (232) Google Scholar). IKKα was cloned into plasmid pRcBactHA and the HA tag was fused to the 5′ end of IKKα (12Mercurio F. Zhu H. Murray B.W. Shevchenko A. Bennett B.L. Li J. Young D.B. Barbosa M. Mann M. Science. 1997; 278: 860-866Crossref PubMed Scopus (1853) Google Scholar, 35Yin M.-J. Christerson L.B. Yamamoto Y. Kwak Y.-T. Xu S. Mercurio F. Barbosa M. Cobb M.H. Gaynor R.B. Cell. 1998; 93: 875-884Abstract Full Text Full Text PDF PubMed Scopus (232) Google Scholar). The cDNA clone containing Myc-tagged CREB was previously described (52Yin M. Paulssen E. Seeler J. Gaynor R. J. Virol. 1995; 69: 6209-6218Crossref PubMed Google Scholar). COS cells grown in Dulbecco's modified Eagle's medium with 10% fetal bovine serum were transfected using Fugene-6 (Roche Molecular Biochemicals) as described by the manufacturer. For a typical cell fractionation experiment, cells cultured overnight in 100-mm plates were transfected with 0.6 μg of each DNA construct. Cells from five transfected plates were pooled, and S100 extracts were prepared as detailed (53Li X.-H. Murphy K.M. Palka K.T. Surabhi R.M. Gaynor R.B. J. Biol. Chem. 1999; 274: 34417-34424Abstract Full Text Full Text PDF PubMed Scopus (34) Google Scholar) except that the extracts were directly loaded onto a Superdex 200 column without dialysis. The S100 extract containing a total of 2 mg of protein was chromatographed through a Superdex-200 column (Amersham Pharmacia Biotech) in buffer D (20 mm HEPES (pH 7.9), 0.1 m KCl, 0.5 mm dithiothreitol, 0.5 mm phenylmethylsulfonyl fluoride, 20% glycerol, and 0.2 mm EDTA) (54Dignam J.D. Lebovitz R.M. Roeder R.G. Nucleic Acids Res. 1983; 11: 1475-1489Crossref PubMed Scopus (9160) Google Scholar), and fractions of 1 ml each were collected. Western blotting was done with 30 μg of protein obtained from each of the column fractions as previously described (53Li X.-H. Murphy K.M. Palka K.T. Surabhi R.M. Gaynor R.B. J. Biol. Chem. 1999; 274: 34417-34424Abstract Full Text Full Text PDF PubMed Scopus (34) Google Scholar). The antibodies used in this analysis are specified in the figure legends. For kinase assays, 50 μl of each column fraction was incubated overnight at 4 °C with 1–2 μg of the indicated antibodies in 150 μl of PD buffer (40 mm Tris-HCl (pH 8.0), 500 mm NaCl, 0.1% Nonidet P-40. 6 mm EDTA, 6 mm EGTA, 10 mm β-glycerophosphate, 10 mm NaF, 300 μmNa3VO4, and protease inhibitors (Roche Molecular Biochemicals)) (12Mercurio F. Zhu H. Murray B.W. Shevchenko A. Bennett B.L. Li J. Young D.B. Barbosa M. Mann M. Science. 1997; 278: 860-866Crossref PubMed Scopus (1853) Google Scholar). Immune complexes were precipitated with protein A-agarose (Bio-Rad) for 1–3 h at 4 °C and analyzed byin vitro kinase assays in the presence of 5 μg of bacterially expressed GST fusion protein consisting of IκBα (aa 1–54) or with serine residues 32 and 36 changed to alanine (53Li X.-H. Murphy K.M. Palka K.T. Surabhi R.M. Gaynor R.B. J. Biol. Chem. 1999; 274: 34417-34424Abstract Full Text Full Text PDF PubMed Scopus (34) Google Scholar). After incubation at 30 °C for 30 min, the reactions were mixed with protein sample buffer (50 mm Tris (pH 8.0), 2% SDS, 0.1% bromphenol blue, 10% glycerol, and β-mecaptoethanol), heated at 95 °C for 3 min, and loaded on a 12% SDS gel. The phosphoprotein products were visualized by autoradiography. COS cells (1.3 × 105) were transfected with either 0.5 μg of IKKβ alone or in the presence of 0.5 μg of wild-type or mutant IKKγ/NEMO mutants. After 24 h post-transfection, cells were grown overnight in 2 ml of Dulbecco's modified Eagle's medium lacking phosphate (Life Technologies, Inc.) followed by incubating 3 h in 1 ml of Dulbecco's modified Eagle's medium in the presence of 50 μCi of [32P]orthophosphate (PerkinElmer Life Sciences). Cells were then collected in 300 μl of PD buffer. The32P-labeled IKKβ protein was immunoprecipitated from 200 μl of cell extract using 4 μg of anti-FLAG monoclonal antibody (Sigma, M2) or 4 μg of anti-HA monoclonal antibody (Roche Molecular Biochemicals, 12CA5). The immunoprecipitates were washed with PD buffer, and the phosphoproteins were resolved on a 10% SDS-polyacrylamide gel and visualized by autoradiography. It has been shown previously that cytokines such as TNFα stimulate IKK activity present in a high molecular complex migrating between 600 and 900 kDa on gel filtration columns (12Mercurio F. Zhu H. Murray B.W. Shevchenko A. Bennett B.L. Li J. Young D.B. Barbosa M. Mann M. Science. 1997; 278: 860-866Crossref PubMed Scopus (1853) Google Scholar, 14Zandi E. Rothwarf D.M. Delhase M. Hayakawa M. Karin M. Cell. 1997; 91: 243-252Abstract Full Text Full Text PDF PubMed Scopus (1589) Google Scholar,23Chen Z.J. Parent L. Maniatis T. Cell. 1996; 84: 853-862Abstract Full Text Full Text PDF PubMed Scopus (870) Google Scholar, 29Mercurio F. Murray B.W. Shevchenko A. Bennett B.L. Young D.B. Li J.W. Pascual G. Motiwala A. Zhu H. Mann M. Manning A.M. Mol. Cell. Biol. 1999; 19: 1526-1538Crossref PubMed Google Scholar, 30Rothwarf D.M. Zandi E. Natoli

Referência(s)