The Electric Quadrupole Moments of Ga 69 and Ga 71 An …
1940; American Institute of Physics; Volume: 57; Issue: 9 Linguagem: Inglês
10.1103/physrev.57.753
ISSN1536-6065
Autores Tópico(s)Thermodynamic and Structural Properties of Metals and Alloys
ResumoAn investigation of the hyperfine structures of the ground $^{2}P_{\frac{1}{2}}$ state, and the metastable $^{2}P_{\frac{3}{2}}$ state of the two isotopes 69 and 71 of gallium has been made with the zero-moment method of atomic beams. Six zero-moment peaks, three for each isotope, of the metastable state and two, one for each isotope, of the ground state have been observed. It has been found that the h.f.s. energy levels for the higher state can be described by an equation of the form $E=\frac{\mathrm{aC}}{2}+bC(C+1)$, where "$a$" and "$b$" are the interval rule and quadrupole interaction constants, respectively. ${{\mathrm{Ga}}^{69}: \frac{b}{a}=0.0136\ifmmode\pm\else\textpm\fi{}0.0004,{\mathrm{Ga}}^{71}: \frac{b}{a}=0.0068\ifmmode\pm\else\textpm\fi{}0.0004}{b=(8.69\ifmmode\pm\else\textpm\fi{}0.43)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5} {\mathrm{cm}}^{\ensuremath{-}1},b=(5.51\ifmmode\pm\else\textpm\fi{}0.39)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5} {\mathrm{cm}}^{\ensuremath{-}1}}{a=(6.39\ifmmode\pm\else\textpm\fi{}0.12)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3} {\mathrm{cm}}^{\ensuremath{-}1},a=(8.11\ifmmode\pm\else\textpm\fi{}0.11)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3} {\mathrm{cm}}^{\ensuremath{-}1}.}$ From these the h.f.s. separations are ${\mathrm{Ga}}^{69}: \ensuremath{\Delta}\ensuremath{\nu}=(0.0362\ifmmode\pm\else\textpm\fi{}0.0007) {\mathrm{cm}}^{\ensuremath{-}1}; {\mathrm{Ga}}^{71}: \ensuremath{\Delta}\ensuremath{\nu}=(0.0474\ifmmode\pm\else\textpm\fi{}0.0007) {\mathrm{cm}}^{\ensuremath{-}1}$ and the quadrupole moments are ${Q}^{69}=0.20\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}24} {\mathrm{cm}}^{2}; {Q}^{71}=0.13\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}24} {\mathrm{cm}}^{2}.$ The nuclear spins are verified to be $\frac{3}{2}$. From the zero-moment peaks of the normal state we obtain $\frac{{\ensuremath{\mu}}_{71}}{{\ensuremath{\mu}}_{69}}=\frac{{\ensuremath{\Delta}\ensuremath{\nu}}_{71}}{{\ensuremath{\Delta}\ensuremath{\nu}}_{69}}=1.270\ifmmode\pm\else\textpm\fi{}0.006$ and these separations are ${\mathrm{Ga}}^{69}: \ensuremath{\Delta}\ensuremath{\nu}=(0.0897\ifmmode\pm\else\textpm\fi{}0.0011) {\mathrm{cm}}^{\ensuremath{-}1}; {\mathrm{Ga}}^{71}: \ensuremath{\Delta}\ensuremath{\nu}=(0.1139\ifmmode\pm\else\textpm\fi{}0.0019) {\mathrm{cm}}^{\ensuremath{-}1}$ and from these the nuclear moments are ${\ensuremath{\mu}}_{69}=2.11; {\ensuremath{\mu}}_{71}=2.69.$
Referência(s)