Artigo Revisado por pares

Contrasted melting relations in a pyrolite upper mantle under mid-oceanic ridge, stable crust and island arc environments

1973; Elsevier BV; Volume: 17; Issue: 3 Linguagem: Inglês

10.1016/0040-1951(73)90008-5

ISSN

1879-3266

Autores

D. H. Green,

Tópico(s)

earthquake and tectonic studies

Resumo

The pyrolite model composition provides a satisfactory source composition for mantle-derived magmas insofar as major elements and "compatible" trace elements are concerned but there is evidence for mantle inhomogeneity in the abundances of "incompatible" minor and trace elements (e.g., K, Ti, P, Rb, Sr, light rare earth elements etc.). The composition of a magma, assuming a constant source composition, varies according to the pressure, temperature and water pressure or water content of the source region. The latter two variables essentially determine the degree of partial melting of the source region and in considering the chemical composition of the melt and nature of the residual phases, this parameter is of prime importance. For high degrees (> 20% approx.) of partial melting of a pyrolite source region, magmas are of tholeiitic character but are of increasingly undersaturated and alkaline type for lower degrees of partial melting and high pressures. For any chosen degree of melting and fixed water content of the source region, magmas are more olivine-rich at higher pressures. For any chosen pressure and chosen degree of partial melting, magmas are less olivine-rich at high water contents (and thus lower temperatures). Quartz tholeiite magmas may be derived by ~ 30% melting of pyrolite under water-saturated conditions at pressures up to between 17 kbar and 20 kbar. These generalizations may be applied to understand the characteristic magmatism of mid-oceanic ridges, island chains, oceanic islands and orogenic regions.

Referência(s)
Altmetric
PlumX