Dendritic cells and immunotherapy for malignant disease
2001; Wiley; Volume: 112; Issue: 4 Linguagem: Inglês
10.1046/j.1365-2141.2001.02626.x
ISSN1365-2141
Autores Tópico(s)T-cell and B-cell Immunology
ResumoBritish Journal of HaematologyVolume 112, Issue 4 p. 874-887 Dendritic cells and immunotherapy for malignant disease Dr C. D. L. Reid, Dr C. D. L. Reid Department of Haematology, Northwick Park Hospital, Harrow, UKSearch for more papers by this author Dr C. D. L. Reid, Dr C. D. L. Reid Department of Haematology, Northwick Park Hospital, Harrow, UKSearch for more papers by this author First published: 20 December 2001 https://doi.org/10.1046/j.1365-2141.2001.02626.xCitations: 48 Dr C. D. L. Reid, Department of Haematology, Northwick Park Hospital, Watford Road, Harrow HA1 3UJ, UK. E-mail: [email protected] Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Abbas, A.K. & Sharpe, A.H. (1999) T-cell stimulation: an abundance of B7s. Nature Medicine, 5, 1345–1346.DOI: 10.1038/70905 10.1038/70905 CASPubMedWeb of Science®Google Scholar Adler, A.J., Marsh, D.W., Yochum, G.S., Guzzo, J.L., Nigam, A., Nelson, W.G., Pardoll, D.M. (1998) CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. Journal of Experimental Medicine, 187, 1555–1564. 10.1084/jem.187.10.1555 CASPubMedWeb of Science®Google Scholar Albert, M.L., Sauter, B., Bhardwaj, N. (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature, 392, 86–89.DOI: 10.1038/32183 10.1038/32183 CASPubMedWeb of Science®Google Scholar Altman, J.D., Moss, P.A.H., Goulder, P.J.R., Barouch, D.H., McHeyzer-Williams, M.G., Bell, J.I., McMichael, A.J., Davis, M.M. (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science, 274, 94–96.DOI: 10.1126/science.274.5284.94 10.1126/science.274.5284.94 CASPubMedWeb of Science®Google Scholar Antin, J.H. (1993) Graft-versus-leukemia: no longer an epiphenomenon. Blood, 82, 2273–2277. 10.1182/blood.V82.8.2273.2273 CASPubMedWeb of Science®Google Scholar Ardavin, C. (1997) Thymic dendritic cells. Immunology Today, 18, 350–361.DOI: 10.1016/s0167-5699(97)01090-6 10.1016/s0167-5699(97)01090-6 CASPubMedWeb of Science®Google Scholar Arpinati, M., Green, C., Heimfeld, S., Heuser, J., Anasetti, C. (2000) Granulocyte-colony stimulating factor mobilizes T-helper 2-inducing dendritic cells. Blood, 95, 2484–2490. CASPubMedWeb of Science®Google Scholar Bakker, A.B., Marland, G., De Boer, A.J., Huijbens, R.J., Danen, E.H., Adema, G.J., Figdor, C.G. (1995) Generation of antimelanoma cytotoxic T lymphocytes from healthy donors after presentation of melanoma-associated antigen-derived epitopes by dendritic cells in vitro. Cancer Research, 55, 5330–5334. CASPubMedWeb of Science®Google Scholar Banchereau, J. & Steinman, R.M. (1998) Dendritic cells and the control of immunity. Nature, 19, 245–252. 10.1038/32588 Web of Science®Google Scholar Bell, D., Chomarat, P., Broyles, D., Netto, G., Harb, G.M., Lebecque, S., Valladeau, J., Davoust, J., Palucka, K.A., Banchereau, J. (1999) In breast cancer tissue, immature dendritic cells reside within the tumour, whereas mature dendritic cells are located in peritumoural areas. Journal of Experimental Medicine, 190, 1417–1425. 10.1084/jem.190.10.1417 CASPubMedWeb of Science®Google Scholar Bender, A., Sapp, M., Schuler, G., Steinman, R.M., Bhardwaj, N. (1996) Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. Journal of Immunological Methods, 196, 121–135.DOI: 10.1016/0022-1759(96)00079-8 10.1016/0022-1759(96)00079-8 CASPubMedWeb of Science®Google Scholar Bennett, S.R., Carbone, F.R., Karamalis, F., Miller, J.F., Heath, W.R. (1997) Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. Journal of Experimental Medicine, 186, 65–70. 10.1084/jem.186.1.65 CASPubMedWeb of Science®Google Scholar Bennett, S.R., Carbone, F.R., Karamalis, F., Flavell, R.A., Miller, J.F., Heath, W.R. (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature, 393, 478–480.DOI: 10.1038/30996 10.1038/30996 CASPubMedWeb of Science®Google Scholar Boczkowski, D., Nair, S.K., Nam, J., Lyerly, H., Gilboa, E. (2000) Induction of tumour immunity and cytotoxic T lymphocyte response using dendritic cells transfected with messenger RNA amplified from tumour cells. Cancer Research, 60, 1028–1034. CASPubMedWeb of Science®Google Scholar Boon, T. & van der Bruggen, P. (1996) Human tumor antigens recognized by T lymphocytes. Journal of Experimental Medicine, 183, 725–729. 10.1084/jem.183.3.725 CASPubMedWeb of Science®Google Scholar Brossart, P., Stuhler, G., Flad, T., Stevanovic, S., Rammensee, H.G., Kanz, L., Brugger, W. (1998) Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Research, 58, 732–736. CASPubMedWeb of Science®Google Scholar Brossart, P., Heinrich, K.S., Stuhler, G., Behnke, L., Reichardt, V.L., Stevanovic, S., Muhm, A., Rammensee, H.G., Kanz, L., Brugger, W. (1999) Identification of HLA A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood, 93, 4309–4317. CASPubMedWeb of Science®Google Scholar Buggins, A.G., Lea, N., Gaken, J., Darling, D., Farzaneh, F., Mufti, G.J., Hirst, W.J. (1999) Effect of costimulation and the microenvironment on antigen presentation by leukemic cells. Blood, 94, 3479–3490. 10.1182/blood.V94.10.3479.422k29_3479_3490 CASPubMedWeb of Science®Google Scholar Buhmann, R., Nolte, A., Westhaus, D., Emmerich, B., Hallek, M. (1999) CD40-activated B-cell chronic lymphocytic leukemia cells for tumor immunotherapy: stimulation of allogeneic versus autologous T cells generates different types of effector cells. Blood, 93, 1992–2002. 10.1182/blood.V93.6.1992.406k23_1992_2002 CASPubMedWeb of Science®Google Scholar Burch, P.A., Breen, J.K., Buckner, J.C., Gastineau, D.A., Kaur, J.A., Laus, R.L., Padley, D.J., Peshwa, M.V., Pitot, H.C., Richardson, R.L., Smits, B.J., Sopapan, P., Strang, G., Valone, F.H., Vuk-Pavlovic, S. (2000) Priming tissue-specific cellular immunity in a phase I trial of autologous dendritic cells for prostate cancer. Clinical Cancer Research, 6, 2175–2182. CASPubMedWeb of Science®Google Scholar Carbone, F.R., Kurts, C., Bennett, S.R., Miller, J.F., Heath, W.R. (1998) Cross-presentation: a general mechanism for CTL immunity and tolerance. Immunology Today, 19, 368–373.DOI: 10.1016/s0167-5699(98)01301-2 10.1016/s0167-5699(98)01301-2 CASPubMedWeb of Science®Google Scholar Caux, C., Dezutter-Dambuyant, C., Schmitt, D., Banchereau, J. (1992) GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells. Nature, 360, 258–261. 10.1038/360258a0 CASPubMedWeb of Science®Google Scholar Cella, M., Sallusto, F., Lanzavecchia, A. (1997) Origin, maturation and antigen presenting function of dendritic cells. Current Opinion in Immunology, 9, 10–16. 10.1016/S0952-7915(97)80153-7 CASPubMedWeb of Science®Google Scholar Charbonnier, A., Gaugler, B., Sainty, D., Lafage-Pochitaloff, M., Olive, D. (1999) Human acute myeloblastic leukemia cells differentiate in vitro into mature dendritic cells and induce the differentiation of cytotoxic T cells against autologous leukemias. European Journal of Immunology, 29, 2567–2578.DOI: 10.1002/(sici)1521-4141(199908)29:08 3.0.co;2-s 10.1002/(sici)1521-4141(199908)29:08 3.0.co;2-s CASPubMedWeb of Science®Google Scholar Chen, L. (1998) Immunological ignorance of silent antigens as an explanation of tumor evasion. Immunology Today, 19, 27–30.DOI: 10.1016/s0167-5699(97)01180-8 10.1016/s0167-5699(97)01180-8 CASPubMedWeb of Science®Google Scholar Choudhury, A., Gajewski, J.L., Liang, J.C., Popat, U., Claxton, D.F., Kliche, K.O., Andreeff, M., Champlin, R.E. (1997) Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukemia. Blood, 89, 1133–1142. 10.1182/blood.V89.4.1133 CASPubMedWeb of Science®Google Scholar Choudhury, B.A., Liang, J.C., Thomas, E.K., Flores-Romo, L., Xie, Q.S., Agusala, K., Sutaria, S., Sinha, I., Champlin, R.E., Claxton, D.F. (1999) Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses. Blood, 93, 780–786. 10.1182/blood.V93.3.780 CASPubMedWeb of Science®Google Scholar Cignetti, A., Bryant, E., Allione, B., Vitale, A., Foa, R., Cheever, M.A. (1999) CD34 (+) acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells. Blood, 94, 2048–2055. CASPubMedWeb of Science®Google Scholar Croft, M. (1994) Activation of naïve, memory and effector T cells. Current Opinion in Immunology, 6, 431–437. 10.1016/0952-7915(94)90123-6 CASPubMedWeb of Science®Google Scholar Cull, G., Durrant, L., Stainer, C., Haynes, A., Russell, N. (1999) Generation of anti-idiotype immune responses following vaccination with idiotype-protein pulsed dendritic cells in myeloma. British Journal of Haematology, 107, 648–655. 10.1046/j.1365-2141.1999.01735.x CASPubMedWeb of Science®Google Scholar Dembic, Z., Schenck, K., Bogen, B. (2000) Dendritic cells purified from myeloma are primed with tumor-specific antigen (idiotype) and activate CD4+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 2697–2702. 10.1073/pnas.050579897 CASPubMedWeb of Science®Google Scholar Dhodapkar, M.V., Steinman, R.M., Sapp, M., Desai, H., Fossella, C., Krasovsky, J., Donahoe, S.M., Dunbar, P.R., Cerundolo, V., Nixon, D.F., Bhardwaj, N. (1999) Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. Journal of Clinical Investigation, 104, 173–180. 10.1172/JCI6909 CASPubMedWeb of Science®Google Scholar Dieu, M.C., Vanbervliet, B., Vicari, A., Bridon, J.M., Oldham, E., Ait-Yahia, S., Briere, F., Zlotnik, A., Lebecque, S., Caux, C. (1998) Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. Journal of Experimental Medicine, 188, 373–386. 10.1084/jem.188.2.373 CASPubMedWeb of Science®Google Scholar Disis, M.L. & Cheever, M.A. (1996) Oncogenic proteins as tumor antigens. Current Opinion in Immunology, 8, 637–642. 10.1016/S0952-7915(96)80079-3 CASPubMedWeb of Science®Google Scholar Disis, M.L., Grabstein, K.H., Sleath, P.R., Cheever, M.A. (1999) Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clinical Cancer Research, 5, 1289–1297,. CASPubMedWeb of Science®Google Scholar Dong, H., Zhu, G., Chen, L. (1999) B7–H1, a third member of the B7 family, co-stimulates T cell proliferation and interleukin-10 secretion. Nature Medicine, 5, 1365–1369.DOI: 10.1038/70932 10.1038/70932 PubMedWeb of Science®Google Scholar Dunussi-Joannoppoulos, K., Runyon, K., Erickson, J., Schaub, R.G., Hawley, R.G., Leonard, J.P. (1999) Vaccines with interleukin-12-transduced acute myeloid leukaemia cells elicit very potent therapeutic and long lasting protective immunity. Blood, 94, 4263–4273. Google Scholar Eggert, A.A., Schreurs, M.W., Boerman, O.C., De Oyen, W.J.B.A.J., Punt, C.J., Figdor, C.G., Adema, G.J. (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Research, 59, 3340–3345. CASPubMedWeb of Science®Google Scholar Engels, F.H., Koski, G.K., Bedrosian, I., Xu, S., Luger, S., Nowell, P.C., Cohen, P.A., Czerniecki, B.J. (1999) Calcium signaling induces acquisition of dendritic cell characteristics in chronic myelogenous leukemia myeloid progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 96, 10332–10337. 10.1073/pnas.96.18.10332 CASPubMedWeb of Science®Google Scholar Falkenburg, J.H., Smit, W.M., Willemze, R. (1997) Cytotoxic T-lymphocyte (CTL) responses against acute or chronic myeloid leukemia. Immunological Reviews, 157, 223–230. 10.1111/j.1600-065X.1997.tb00985.x PubMedWeb of Science®Google Scholar Falkenburg, J.H., Wafelman, A.R., Joosten, P., Smit, W.M., Van Bergen, C.A., Bongaerts, R., Lurvink, E., Van Der Hoorn, M., Kluck, P., Landegent, J.E., Kluin-Nelemans, H.C., Fibbe, W.E., Willemze, R. (1999) Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood, 94, 1201–1208. 10.1182/blood.V94.4.1201 CASPubMedWeb of Science®Google Scholar Fernandez, N.C., Lozier, A., Flament, C., Ricciardi-Castagnoli, P., Bellet, D., Suter, M., Perricaudet, M., Tursz, T., Maraskovsky, E., Zitvogel, L. (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nature Medicine, 5, 405–411.DOI: 10.1038/7403 10.1038/7403 CASPubMedWeb of Science®Google Scholar Fields, R.C., Shimizu, K., Mule, J.J. (1998) Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 95, 9482–9487. 10.1073/pnas.95.16.9482 CASPubMedWeb of Science®Google Scholar Gabrilovich, D.I., Chen, H.L., Girgis, K.R., Cunningham, H.T., Meny, G.M., Nadaf, S., Kavanaugh, D., Carbone, D.P. (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Medicine, 2, 1096–1103. 10.1038/nm1096-1096 CASPubMedWeb of Science®Google Scholar Gabrilovich, D.I., Corak, J., Ciernik, I.F., Kavanaugh, D., Carbone, D.P. (1997) Decreased antigen presentation by dendritic cells in patients with breast cancer. Clinical Cancer Research, 3, 483–490. CASPubMedWeb of Science®Google Scholar Gabrilovich, D., Ishida, T., Oyama, T., Ran, S., Kravtsov, V., Nadaf, S., Carbone, D.P. (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood, 92, 4150–4166. 10.1182/blood.V92.11.4150 CASPubMedWeb of Science®Google Scholar Gallucci, S., Lolkema, M., Matzinger, P. (1999) Natural adjuvants: endogenous activators of dendritic cells. Nature Medicine, 5, 1249–1255.DOI: 10.1038/15200 10.1038/15200 CASPubMedWeb of Science®Google Scholar Galy, A., Travis, M., Cen, D., Chen, B. (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity, 3, 459–473. 10.1016/1074-7613(95)90175-2 CASPubMedWeb of Science®Google Scholar Gao, L., Bellantuono, I., ElsasSeries, A., Marley, S.B., Gordon, M.Y., Goldman, J.M., Stauss, H.J. (2000) Selective elimination of leukemic CD34 (+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood, 95, 2198–2203. CASPubMedWeb of Science®Google Scholar Gong, J., Chen, D., Kashiwaba, M., Kufe, D. (1997) Induction of antitumour activity by immunisation with fusions of dendritic and carcinoma cells. Nature Medicine, 3, 558–561. 10.1038/nm0597-558 CASPubMedWeb of Science®Google Scholar Gong, J., Chen, D., Kashiwaba, M., Li, Y., Chen, L., Takeuchi, H., Qu, H., Rowse, G.J., Gendler, S.J., Kufe, D. (1998) Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 6279–6283. 10.1073/pnas.95.11.6279 CASPubMedWeb of Science®Google Scholar Grabbe, S., Beissert, S., Schwarz, T., Granstein, R.D. (1995) Dendritic cells as initiators of tumor immune responses: a possible strategy for tumor immunotherapy? Immunology Today, 16, 117–121. 10.1016/0167-5699(95)80125-1 CASPubMedWeb of Science®Google Scholar Grouard, G., Durand, I., Filgueira, L., Banchereau, J., Liu, Y.J. (1996) Dendritic cells capable of stimulating T cells in germinal centres. Nature, 384, 364–367. 10.1038/384364a0 CASPubMedWeb of Science®Google Scholar Grouard, G., Rissoan, M.C., Filgueira, L., Durand, I., Banchereau, J., Liu, Y.J. (1997) The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. Journal of Experimental Medicine, 185, 1101–1111. 10.1084/jem.185.6.1101 CASPubMedWeb of Science®Google Scholar Gunn, M., Kyuwa, S., Tam, C., Kakiuchi, T., Matsuzawa, A., Williams, L., Nakano, H. (1999) Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localisation. Journal of Experimental Medicine, 189, 451–460. 10.1084/jem.189.3.451 CASPubMedWeb of Science®Google Scholar Hart, D.N. (1997) Dendritic cells: unique leukocyte populations which control the primary immune response. Blood, 90, 3245–3287. 10.1182/blood.V90.9.3245 CASPubMedWeb of Science®Google Scholar Heath, W.R. & Carbone, F.R. (1999) Cytotoxic T lymphocyte activation by cross-priming. Current Opinion in Immunology, 11, 314–318.DOI: 10.1016/s0952-7915(99)80050-8 10.1016/s0952-7915(99)80050-8 CASPubMedWeb of Science®Google Scholar Heiser, A., Dahm, P.R., Yancey, D., Maurice, M.A., Boczkowski, D., Nair, S.K., Gilboa, E., Vieweg, J. (2000) Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. Journal of Immunology, 164, 5508–5514. 10.4049/jimmunol.164.10.5508 CASPubMedWeb of Science®Google Scholar Hermans, I.F., Ritchie, D.S., Yang, J., Roberts, J.M., Ronchese, F. (2000) CD8+ T cell-dependent elimination of dendritic cells in vivo limits the induction of antitumor immunity. Journal of Immunology, 2000, 3095–3101. 10.4049/jimmunol.164.6.3095 Google Scholar Houghton, A.N. & Lloyd, K.O. (1998) Stuck in the MUC on the long and winding road. Nature Medicine, 4, 270–271. 10.1038/nm0398-270 CASPubMedWeb of Science®Google Scholar Hsu, F.J., Benike, C., Fagnoni, F., Liles, T.M., Czerwinski, D., Taidi, B., Engleman, E.G., Levy, R. (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Medicine, 2, 52–58. 10.1038/nm0196-52 CASPubMedWeb of Science®Google Scholar Huang, A.Y., Golumbek, P., Ahmadzadeh, M., Jaffee, E., Pardoll, D., Levitsky, H. (1994) Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science, 264, 961–965,. 10.1126/science.7513904 CASPubMedWeb of Science®Google Scholar Huang, A.Y., Bruce, A.T., Pardoll, D.M., Levitsky, H.I. (1996) Does B7–1 expression confer antigen-presenting cell capacity to tumors in vivo? Journal of Experimental Medicine, 183, 769–776. 10.1084/jem.183.3.769 CASPubMedWeb of Science®Google Scholar Hung, K., Hayashi, R., Lafond-Walker, C., Lowenstein, C., Pardoll, D., Levitsky, H. (1998) The central role of CD4+ T cells in the anti-tumour immune response. Journal of Experimental Medicine, 188, 2357–2368. 10.1084/jem.188.12.2357 CASPubMedWeb of Science®Google Scholar Kawashima, I., Tsai, V., Southwood, S., Takesako, K., Sette, A., Celis, E. (1999) Identification of HLA-A3-restricted cytotoxic T lymphocyte epitopes from carcinoembryonic antigen and HER-2/neu by primary in vitro immunization with peptide-pulsed dendritic cells. Cancer Research, 59, 431–435. CASPubMedWeb of Science®Google Scholar Knight, S.C., Hunt, R., Dore, C., Medawar, P.B. (1985) Influence of dendritic cells on tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 82, 4495–4497. 10.1073/pnas.82.13.4495 PubMedWeb of Science®Google Scholar Kolb, H.J., Schattenberg, A., Goldman, J.M., Hertenstein, B., Jacobsen, N., Arcese, W., Ljungman, P., Ferrant, A., Verdonck, L., Niederwieser, D. (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood, 86, 2041–2050. 10.1182/blood.V86.5.2041.bloodjournal8652041 CASPubMedWeb of Science®Google Scholar Krummel, M. & Allison, J. (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. Journal of Experimental Medicine, 182, 459–465. 10.1084/jem.182.2.459 CASPubMedWeb of Science®Google Scholar Kufe, D.W. (2000) Smallpox, polio and now a cancer vaccine? Nature Medicine, 6, 252–253.DOI: 10.1038/73082 10.1038/73082 CASPubMedWeb of Science®Google Scholar Kugler, A., Stuhler, G., Walden, P., Zoller, G., Zobywalski, A., Brossart, P., Trefzer, U., Ullrich, S., Muller, C.A., Becker, V., Gross, A.J., Hemmerlein, B., Kanz, L., Muller, G.A., Ringert, R.H. (2000) Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nature Medicine, 6, 332–336.DOI: 10.1038/73193 10.1038/73193 CASPubMedWeb of Science®Google Scholar Kurts, C., Kosaka, H., Carbone, F.R., Miller, J.F., Heath, W.R. (1997) Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. Journal of Experimental Medicine, 186, 239–245. 10.1084/jem.186.2.239 CASPubMedWeb of Science®Google Scholar Kwak, L.W., Campbell, M.J., Czerwinski, D.K., Hart, S., Miller, R.A., Levy, R. (1992) Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. New England Journal of Medicine, 327, 1209–1215. 10.1056/NEJM199210223271705 PubMedWeb of Science®Google Scholar Kwak, L.W., Taub, D.D., Duffey, P.L., Bensinger, W.I., Bryant, E.M., Reynolds, C.W., Longo, D.L. (1995) Transfer of myeloma idiotype-specific immunity from an actively immunised marrow donor. Lancet, 345, 1016–1020. 10.1016/S0140-6736(95)90757-2 CASPubMedWeb of Science®Google Scholar Labeur, M.S., Roters, B., Pers, B., Mehling, A., Luger, T.A., Schwarz, T., Grabbe, S. (1999) Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. Journal of Immunology, 162, 168–175. CASPubMedWeb of Science®Google Scholar Lalvani, A. & Hill, A.V. (1998) Cytotoxic T-lymphocytes against malaria and tuberculosis: from natural immunity to vaccine design. Clinical Science, 95, 531–538. 10.1042/CS19980201 CASPubMedWeb of Science®Google Scholar Lee, P.P., Yee, C., Savage, P.A., Fong, L., Brockstedt, D., Weber, J.S., Johnson, D., Swetter, S., Thompson, J., Greenberg, P.D., Roederer, M., Davis, M.M. (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Medicine, 5, 677–685.DOI: 10.1038/9525 10.1038/9525 CASPubMedWeb of Science®Google Scholar Lodge, P.A., Jones, L.A., Bader, R.A., Murphy, G.P., Salgaller, M.L. (2000) Dendritic cell-based immunotherapy of prostate cancer: immune monitoring of a phase II clinical trial. Cancer Research, 60, 829–833. CASPubMedWeb of Science®Google Scholar Lokhorst, H., Schattemberg, A., Cornelissen, L., Thomas, L., Verdonck, L. (1997) Donor leucocyte infusions are effective in relapsed multiple myeloma after allogeneic bone marrow transplantation. Blood, 90, 4206–4211. CASPubMedWeb of Science®Google Scholar Macatonia, S.E., Hosken, N.A., Litton, M., Vieira, P., Hsieh, C.S., Culpepper, J.A., Wysocka, M., Trinchieri, G., Murphy, K.M., O'Garra, A. (1995) Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. Journal of Immunology, 154, 5071–5079. CASPubMedWeb of Science®Google Scholar Mackensen, A., Herbst, B., Chen, J.L., Kohler, G., Noppen, C., Herr, W., Spagnoli, G.C., Cerundolo, V., Lindemann, A. (2000) Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells. International Journal of Cancer, 86, 385–392.DOI: 10.1002/(sici)1097-0215(20000501)86:3 3.0.co;2-t 10.1002/(sici)1097-0215(20000501)86:3 3.0.co;2-t CASPubMedWeb of Science®Google Scholar Maino, V.C. & Picker, L.J. (1998) Identification of functional subsets by flow cytometry: intracellular detection of cytokine expression. Cytometry, 34, 207–215.DOI: 10.1002/(sici)1097-0320(19981015)34:5 3.3.co;2-a 10.1002/(SICI)1097-0320(19981015)34:5 3.0.CO;2-J CASPubMedWeb of Science®Google Scholar Mannering, S.I., McKenzie, J.L., Fearnley, D.B., Hart, D.N. (1997) HLA-DR1-restricted bcr-abl (b3a2)-specific CD4+ T lymphocytes respond to dendritic cells pulsed with b3a2 peptide and antigen-presenting cells exposed to b3a2 containing cell lysates. Blood, 90, 290–297. CASPubMedWeb of Science®Google Scholar Matsushita, M., Ikeda, H., Kizaki, M., Okamoto, S., Ikeda, Y., Kawakami, Y. (1999) PRAME, a novel tumour marker for the detection of minimal residual disease in leukaemia and lymphoma. Blood, 94, 285a. Web of Science®Google Scholar Matzinger, P. (1994) Tolerance, danger and the extended family. Annual Review of Immunology, 12, 991–1045. 10.1146/annurev.iy.12.040194.005015 CASPubMedWeb of Science®Google Scholar Mayordomo, J.I., Zorina, T., Storkus, W.J., Zitvogel, L., Celluzzi, C., Falo, L.D., Melief, C.J., Ildstad, S.T., Kast, W.M., DeLeo, A.B., Lotze, M. (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nature Medicine, 1, 1297–1302. 10.1038/nm1295-1297 CASPubMedWeb of Science®Google Scholar Molldrem, J., Dermime, S., Parker, K., Jiang, Y.Z., Mavroudis, D., Hensel, N., Fukushima, P., Barrett, A.J. (1996) Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood, 88, 2450–2457. 10.1182/blood.V88.7.2450.bloodjournal8872450 CASPubMedWeb of Science®Google Scholar Molldrem, J.J., Lee, P.P., Wang, C., Felio, K., Kantarjian, H.M., Champlin, R.E., Davis, M.M. (2000) Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nature Medicine, 6, 1018–1023.DOI: 10.1038/79526 10.1038/79526 CASPubMedWeb of Science®Google Scholar Morse, M.A., Coleman, R.E., Akabani, G., Niehaus, N., Coleman, D., Lyerly, H.K. (1999) Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Research, 59, 56–58. CASPubMedWeb of Science®Google Scholar Mortarini, R., Di Anichini, A.N.M., Siena, S., Bregni, M., Belli, F., Molla, A., Gianni, A.M., Parmiani, G. (1997) Autologous dendritic cells derived from CD34+ progenitors and from monocytes are not functionally equivalent antigen-presenting cells in the induction of melan-A/Mart-1 (27–35)-specific CTLs from peripheral blood lymphocytes of melanoma patients with low frequency of CTL precursors. Cancer Research, 57, 5534–5541. CASPubMedWeb of Science®Google Scholar Mutis, T., Schrama, E., Melief, C.J., Goulmy, E. (1998) CD80-Transfected acute myeloid leukemia cells induce primary allogeneic T-cell responses directed at patient specific minor histocompatibility antigens and leukemia-associated antigens. Blood, 92, 1677–1684. 10.1182/blood.V92.5.1677.417k14_1677_1684 CASPubMedWeb of Science®Google Scholar Mutis, T., Verdijk, R., Schrama, E., Esendam, B., Brand, A., Goulmy, E. (1999) Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood, 93, 2336–2341. CASPubMedWeb of Science®Google Scholar Nanda, N.K. & Sercarz, E.E. (1995) Induction of anti-self-immunity to cure cancer. Cell, 82, 13–17. 10.1016/0092-8674(95)90047-0 CASPubMedWeb of Science®Google Scholar Nestle, F.O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., Burg, G., Schadendorf, D. (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Medicine, 4, 328–332. 10.1038/nm0398-328 CASPubMedWeb of Science®Google Scholar Nociari, M.M., Shalev, A., Benias, P., Russo, C. (1998) A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity. Journal of Immunological Methods, 213, 157–167.DOI: 10.1016/s0022-1759(98)00028-3 10.1016/s0022-1759(98)00028-3 CASPubMedWeb of Science®Google Scholar Olweus, J., BitMansour, A., Warnke, R., Thompson, P.A., Carballido, J., Picker, L.J., Lund-Johansen, F. (1997) Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin. Proceedings of the National Academy of Sciences of the United States of America, 94, 12551–12556. 10.1073/pnas.94.23.12551 CASPubMedWeb of Science®Google Scholar Ostankovitch, M., Buzyn, A., Bonhomme, D., Connan, F., Bouscary, D., Heshmati, F., Dreyfus, F., Choppin, J., Guillet, J.G.
Referência(s)