Artigo Revisado por pares

Charge density studies utilizing powder diffraction and MEM. Exploring of high Tc superconductors, C 60 superconductors and manganites

2001; De Gruyter; Volume: 216; Issue: 2 Linguagem: Inglês

10.1524/zkri.216.2.71.20335

ISSN

2196-7105

Autores

Masaki Takata, Eiji Nishibori, Makoto Sakata,

Tópico(s)

X-ray Diffraction in Crystallography

Resumo

Abstract The recent progress of the accurate charge density studies by the Maximum Entropy Method(MEM) utilizing X-ray powder diffraction is reviewed with some examples. Results for PrBCO (PrBa 2 Cu 3 O 7-δ ), YBCO (YBa 2 Cu 3 O 7-δ ), C 60 superconductors (Rb 2 CsC 60 , K 2 RbC 60 , Na 2 RbC 60 ) and the layered manganite, NdSr 2 Mn 2 O 7 , which is well known as colossal magnetoresistive (CMR)-related material, are given. For non-super conductor, PrBCO, it is found in the MEM charge density that there exist directional robes of the charge density from Pr atom toward the O atoms in the CuO 2 conduction planes. On the other hand, for a very well known high Tc super conductor, YBCO, appreciable charge densities in the interatomic region around the Y atom is not recognized in the MEM charge density. The distinct difference of the charge densities between PrBCO and YBCO presents clear experimental evidence of the hybridization between Pr(4f)–O(2p π ) orbitals which supports the idea that the hole trapping by the hybridizes states suppresses the superconductivity in PrBCO. The MEM charge densities of the fullerene superconductors, Rb 2 CsC 60 , K 2 RbC 60 and Na 2 RbC 60 , show distinct structural differences from that of non-superconductors, C 60 and Li 2 CsC 60 , reflecting the superconducting properties. And the charge deficiencies of the doped metal atoms, which should be associated with charge transfer from the metal atoms to the C 60 molecule seems to have strong correlation to the superconducting transition temperature, Tc. As the bigger the charge charge trnsfer, the higher the Tc. In the accurate MEM charge density of antiferromagnetic manganite, NdSr 2 Mn 2 O 7 , the direct imaging of spontaneous ordering of the dx 2 - y 2 orbital indicating anisotropic exchange couplings between the local-spins on the Mn sites, which causes an unique layered-type spin order. The theoretical background of the MEM is also mentioned in some detail.

Referência(s)