Artigo Revisado por pares

Reply to ‘Early Silurian positive δ 13 C excursions and their relationship to glaciations, sea‐level changes and extinction events: discussion’ by Bradley D. Cramer and Axel Munnecke

2008; Wiley; Volume: 43; Issue: 4 Linguagem: Inglês

10.1002/gj.1110

ISSN

1099-1034

Autores

David K. Loydell,

Tópico(s)

Geochemistry and Elemental Analysis

Resumo

Geological JournalVolume 43, Issue 4 p. 511-515 Reply Article Reply to 'Early Silurian positive δ13C excursions and their relationship to glaciations, sea-level changes and extinction events: discussion' by Bradley D. Cramer and Axel Munnecke David K. Loydell, Corresponding Author David K. Loydell [email protected] School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, UKSchool of Earth and Environmental Sciences, University of Portsmouth, Burnaby Road, Portsmouth PO1 3QL, UK.Search for more papers by this author David K. Loydell, Corresponding Author David K. Loydell [email protected] School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, UKSchool of Earth and Environmental Sciences, University of Portsmouth, Burnaby Road, Portsmouth PO1 3QL, UK.Search for more papers by this author First published: 10 April 2008 https://doi.org/10.1002/gj.1110Citations: 15AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES Bickert T, Pätzold J, Samtleben C, Munnecke A. 1997. Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica Acta 61: 2717–2730. 10.1016/S0016-7037(97)00136-1 CASWeb of Science®Google Scholar Brenchley PJ, Marshall JD, Underwood CJ. 2001. Do all mass extinctions represent an ecological crisis? Evidence from the Late Ordovician. Geological Journal 36: 329–340. 10.1002/gj.880 Web of Science®Google Scholar Brunton FR, Smith L, Dixon OA, Copper P, Nestor H, Kershaw S. 1998. Silurian reef episodes, changing seascapes, and paleobiogeography. New York State Museum Bulletin 491: 265–282. Google Scholar Calner M, Jeppsson L, Munnecke A. 2004. The Silurian of Gotland—part 1: review of the stratigraphic framework, event stratigraphy, and stable carbon and oxygen isotope development. Erlanger geologische Abhandlungen – Sonderband 5: 113–131. Google Scholar JA Coe (ed.). 2003. The Sedimentary Record of Sea-level Change. Cambridge University Press: Cambridge; 288. Google Scholar Cramer BD, Saltzman MR. 2007. Early Silurian paired δ13Ccarb and δ13Corg analyses from the mid-continent of North America: implications for paleoceanography and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 256: 195–203. 10.1016/j.palaeo.2007.02.032 Web of Science®Google Scholar Jeppsson L, Calner M. 2003. The Silurian Mulde Event and a scenario for secundo–secundo events. Transactions of the Royal Society of Edinburgh: Earth Sciences 93: 135–154. 10.1017/S0263593300000377 Web of Science®Google Scholar Johnson ME, Kaljo D, Rong J-Y. 1991. Silurian eustasy. Special Papers in Palaeontology 44: 3–13. Web of Science®Google Scholar Kershaw S. 1984. Patterns of stromatoporoid growth in level-bottom environments. Palaeontology 27: 113–130, pl. 20. Web of Science®Google Scholar Kump LR, Arthur MA, Patzkowsky ME, Gibbs MT, Pinkus DS, Sheehan PM. 1999. A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology 152: 173–187. 10.1016/S0031-0182(99)00046-2 Web of Science®Google Scholar Laufeld S, Bassett MG. 1981. Gotland: the anatomy of a Silurian carbonate platform. Episodes 2: 23–27. Google Scholar Lehnert O, Joachimski MM, Frýda J, Buggisch W, Calner M, Jeppsson L, Eriksson ME. 2006. The Ludlow Lau event—another glaciation in the Silurian greenhouse? 2006 Philadelphia Annual Meeting, Geological Society of America Abstracts with Programs 38: 183. Google Scholar Lloyd RM. 1964. Variations in the oxygen and carbon isotope ratios of Florida Bay mollusks and their environmental significance. Journal of Geology 72: 84–111. 10.1086/626966 CASWeb of Science®Google Scholar Loydell DK. 1998. Early Silurian sea-level changes. Geological Magazine 135: 447–471. 10.1017/S0016756898008917 Web of Science®Google Scholar Loydell DK. 2007. Early Silurian positive δ13C excursions and their relationship to glaciations, sea-level changes and extinction events. Geological Journal 42: 531–546. 10.1002/gj.1090 CASWeb of Science®Google Scholar Loydell DK, Frýda J. 2007. Carbon isotope stratigraphy of the upper Telychian and lower Sheinwoodian (Llandovery–Wenlock, Silurian) of the Banwy River section, Wales. Geological Magazine 144: 1015–1019. 10.1017/S0016756807003895 CASWeb of Science®Google Scholar Loydell DK, Jeppsson L. 2006. Graptolites from the Lower and Upper Visby formations of NW Gotland. GFF 128: 159–160. 10.1080/11035890601282159 Web of Science®Google Scholar Loydell DK, Männik P, Nestor V. 2003. Integrated biostratigraphy of the lower Silurian of the Aizpute-41 core, Latvia. Geological Magazine 140: 205–229. 10.1017/S0016756802007264 Web of Science®Google Scholar Manten AA. 1962. Some middle Silurian reefs of Gotland. Sedimentology 1: 211–234. 10.1111/j.1365-3091.1962.tb00456.x Web of Science®Google Scholar Melchin MJ, Holmden C. 2006a. Carbon isotope chemostratigraphy of the Llandovery in Arctic Canada: implications for global correlation and sea-level change. GFF 128: 173–180. 10.1080/11035890601282173 Web of Science®Google Scholar Melchin MJ, Holmden C. 2006b. Carbon isotope chemostratigraphy in Arctic Canada: sea-level forcing of carbonate platform weathering and implications for Hirnantian global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology 234: 186–200. 10.1016/j.palaeo.2005.10.009 Web of Science®Google Scholar Melchin MJ, Koren' TN, Štorch P. 1998. Global diversity and survivorship patterns of Silurian graptoloids. New York State Museum Bulletin 491: 165–182. Google Scholar Munnecke A, Samtleben C, Bickert T. 2003. The Ireviken Event in the lower Silurian of Gotland, Sweden—relation to similar Palaeozoic and Proterozoic events. Palaeogeography, Palaeoclimatology, Palaeoecology 195: 99–124. 10.1016/S0031-0182(03)00304-3 Web of Science®Google Scholar Nestor H. 1997. Silurian. In Geology and Mineral Resources of Estonia, A Raukas, A Teedumäe (eds). Estonian Academy Publishers: Tallinn; 89–106. Google Scholar Patterson WP, Walter LM. 1994. Depletion of 13C in seawater ΣCO2 on modern carbonate platforms: significance for the carbon isotopic record of carbonates. Geology 22: 885–888. 10.1130/0091-7613(1994)022 2.3.CO;2 CASWeb of Science®Google Scholar Samtleben C, Munnecke A, Bickert T. 2000. Development of facies and C/O isotopes in transects through the Ludlow of Gotland: evidence for global and local influences on a shallow-marine environment. Facies 43: 1–38. 10.1007/BF02536983 Web of Science®Google Scholar Samtleben C, Munnecke A, Bickert T, Pätzold J. 1996. The Silurian of Gotland (Sweden): facies interpretation based on stable isotopes in brachiopod shells. Geologische Rundschau 85: 278–292. 10.1007/BF02422234 CASWeb of Science®Google Scholar Watts NR, Riding R. 2000. Growth of rigid high-relief patch reefs, Mid-Silurian, Gotland, Sweden. Sedimentology 47: 979–994. 10.1046/j.1365-3091.2000.00334.x Web of Science®Google Scholar Citing Literature Volume43, Issue4September 2008Pages 511-515 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX