Simple 7-designs with small parameters
1999; Wiley; Volume: 7; Issue: 2 Linguagem: Inglês
10.1002/(sici)1520-6610(1999)7
ISSN1520-6610
AutoresAnton Betten, Reinhard Laue, Alfred Wassermann,
Tópico(s)Finite Group Theory Research
ResumoJournal of Combinatorial DesignsVolume 7, Issue 2 p. 79-94 Research Article Simple 7-designs with small parameters Anton Betten, Corresponding Author Anton Betten [email protected] Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Ger˜manyDepartment of Mathematics, University of Bayreuth, D-95440 Bayreuth, Ger˜manySearch for more papers by this authorReinhard Laue, Reinhard Laue Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Ger˜manySearch for more papers by this authorAlfred Wassermann, Alfred Wassermann Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Ger˜manySearch for more papers by this author Anton Betten, Corresponding Author Anton Betten [email protected] Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Ger˜manyDepartment of Mathematics, University of Bayreuth, D-95440 Bayreuth, Ger˜manySearch for more papers by this authorReinhard Laue, Reinhard Laue Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Ger˜manySearch for more papers by this authorAlfred Wassermann, Alfred Wassermann Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Ger˜manySearch for more papers by this author First published: 26 March 1999 https://doi.org/10.1002/(SICI)1520-6610(1999)7:2 3.0.CO;2-DCitations: 11AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract We describe a computer search for the construction of simple designs with prescribed automorphism groups. Using our program package DISCRETA this search yields designs with parameter sets 7-(33, 8, 10), 7-(27, 9, 60), 7-(26, 9, λ) for λ = 54, 63, 81, 7-(26, 8, 6), 7-(25, 9, λ) for λ = 45, 54, 72, 7-(24, 9, λ) for λ = 40, 48, 64, 7-(24, 8, λ) for λ = 4, 5, 6, 7, 8, 6-(25, 8, λ) for λ = 36, 45, 54, 63, 72, 81, 6-(24, 8, λ) for λ = 36, 45, 54, 63, 72, 5-(19, 6, 4), and 5-(19, 6, 6). In several of these cases we are able to determine the exact number of isomorphism types of designs with that prescribed automorphism group. © 1999 John Wiley & Sons, Inc. J Combin Designs 7: 79–94, 1999 REFERENCES 1 M. R. C. M. Berkelaar, lp-solve, a public domain MILP solver, freely available from ftp://ftp.es.ele.tue.nl/pub/lp―solve/. Google Scholar 2 T. Beth, D. Jungnickel, and H. Lenz, Design theory, BI Wissenschaftsverlag, Mannheim 1985, p. 258. Google Scholar 3 A. Betten, A. Kerber, A. Kohnert, R. Laue, and A. Wassermann, The discovery of simple 7-designs with automorphism group Pγ L(2, 32), AAECC Proceedings 1995 in Springer LNCS 948 (1995), 131–145. Web of Science®Google Scholar 4 Yeow Meng Chee, C. J. Colbourn, and D. L. Kreher, Simple t-designs with v ≤ 30, Ars Combin 29 (1990), 193–258. Web of Science®Google Scholar 5 C. J. Colbourn and J. H. Dinitz, The CRC handbook of combinatorial designs CRC Press Boca Raton (1996). 10.1201/9781420049954 Google Scholar 6 M. J. Grannell and T. S. Griggs, A Steiner system S(5, 6, 108), Discrete Math 125 (1995), 183–186. 10.1016/0012-365X(94)90159-7 Web of Science®Google Scholar 7 M. J. Grannell and T. S. Griggs, " Some applications of computers in design theory," Computers in Math. Research, Inst Math Appl Conf Ser Ser 14, Oxford Univ. Press, 1988, pp. 135–148. Google Scholar 8 M. J. Grannell, T. S. Griggs, and R. A. Mathon, On Steiner systems S(5, 6, 48), J Combin Math Combin Comput 12 (1992), 77–96. Google Scholar 9 M. J. Grannell, T. S. Griggs, and R. A. Mathon, Some Steiner 5-designs with 108 and 132 points, J Combin Designs 1(3), (1993), 213–238. 10.1002/jcd.3180010304 Google Scholar 10 B. Huppert, Endliche Gruppen I, Grundlehren der math Wiss. 134 Springer-Verlag, Berlin-Heidelberg-New York, 1967. 10.1007/978-3-642-64981-3 Google Scholar 11 M. Kaib and H. Ritter, Block reduction for arbitrary norms, Manuscript Frankfurt, 1995. Google Scholar 12 E. S. Kramer and S. S. Magliveras, Some mutually disjoint Steiner systems, J Combin Ser Theory A 17 (1974), 39–43. 10.1016/0097-3165(74)90026-0 Google Scholar 13 E. S. Kramer and D. M. Mesner, t-designs on hypergraphs, Discrete Math 15 (1976), 263–296. 10.1016/0012-365X(76)90030-3 Web of Science®Google Scholar 14 D. L. Kreher, An infinite family of (simple) 6-designs, J Combin Designs 1(4) (1993), 41–48. 10.1002/jcd.3180010403 Google Scholar 15 D. L. Kreher, Simple t-designs with large t: A survey, J Combin Math Combin Comput 15 (1994), 97–110. Google Scholar 16 D. L. Kreher and S. P. Radziszowski, Finding simple t-designs by using basis reduction, Congr Numer 55 (1986), 235–244. Google Scholar 17 D. L. Kreher and S. P. Radziszowski, The existence of simple 6-(14, 7, 4) designs, J Combin Theory Ser A 43 (1986), 237–243. 10.1016/0097-3165(86)90064-6 Web of Science®Google Scholar 18 D. L. Kreher and S. P. Radziszowski, Simple 5-(28, 6, λ) designs from PSL2(27), Annals of Discrete Math 37 (1987), 315–318. Google Scholar 19 A. K. Lenstra, H. W. Lenstra Jr., and L. Lov´sz, Factoring polynomials with rational coefficients, Math Ann 261 (1982), 515–534. 10.1007/BF01457454 Web of Science®Google Scholar 20 S. Magliveras and D. W. Leavitt, Simple 6-(33, 8, 36) designs from PΓL2(32), Computational group theory, M. D. Atkinson (Editor), Academic Press, 1984, pp. 337–352. Google Scholar 21 B. Schmalz, t-Designs zu vorgegebener Automorphismengruppe, Bayreuther Math Schr 41 (1992), 1–164. Google Scholar 22 B. Schmalz, The t-designs with prescribed automorphism group, new simple 6-designs, J Combin Designs 1 (1993), 125–170. 10.1002/jcd.3180010204 Google Scholar 23 C. P. Schnorr and M. Euchner, Lattice basis reduction: Improved practical algorithms and solving subset sum problems, Proceedings of Fundamentals of Computation Theory 91 in Springer LNCS 529 (1991), 68–85. Web of Science®Google Scholar 24 C. P. Schnorr and H. H. Houml;rner, " Attacking the Chor-Rivest cryptosystem by improved lattice reduction," Advances in Cryptology-Eurocrypt '95 in Springer LCNS 921 (1995), 1–12. 10.1007/3-540-49264-X_1 Google Scholar 25 L. Teirlinck, Non-trivial t-designs without repeated blocks exist for all t, Discrete Math 65 (1987), 301–311. 10.1016/0012-365X(87)90061-6 Web of Science®Google Scholar 26 Tran van Trung, On the construction of t-designs and the existence of some new infinite families of simple 5-designs, Arch Math 47 (1986), 187–192. 10.1007/BF01193690 Web of Science®Google Scholar 27 A. Wassermann, Finding simple t-designs with enumeration techniques, J Combin Designs 6 (1998), 79–90. 10.1002/(SICI)1520-6610(1998)6:2 3.0.CO;2-S Web of Science®Google Scholar Citing Literature Volume7, Issue21999Pages 79-94 ReferencesRelatedInformation
Referência(s)