Artigo Produção Nacional Revisado por pares

Neuroprotective effects of agmatine in mice infused with a single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)

2012; Elsevier BV; Volume: 235; Issue: 2 Linguagem: Inglês

10.1016/j.bbr.2012.08.017

ISSN

1872-7549

Autores

Filipe C. Matheus, Aderbal S. Aguiar, Adalberto A. Castro, Jardel Gomes Villarinho, Juliano Ferreira, Cláudia P. Figueiredo, Roger Walz, Adair R.S. Santos, Carla I. Tasca, Rui Daniel Prediger,

Tópico(s)

Olfactory and Sensory Function Studies

Resumo

We have recently demonstrated that rodents treated intranasally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) suffered impairments in olfactory, cognitive, emotional and motor functions associated with time-dependent disruption of dopaminergic neurotransmission in different brain structures conceivably analogous to those observed during different stages of Parkinson's disease (PD). Agmatine, an endogenous arginine metabolite, has been proposed as a novel neuromodulator that plays protective roles in several models of neuronal cellular damage. In the present study we demonstrated that repeated treatment with agmatine (30 mg/kg, i.p.) during 5 consecutive days increased the survival rate (from 40% to 80%) of 15-month-old C57BL/6 female mice infused with a single intranasal (i.n.) administration of MPTP (1 mg/nostril), improving the general neurological status of the surviving animals. Moreover, pretreatment with agmatine was found to attenuate short-term social memory and locomotor activity impairments observed at different periods after i.n. MPTP administration. These behavioral benefits of exogenous agmatine administration were accompanied by a protection against the MPTP-induced decrease of hippocampal glutamate uptake and loss of dopaminergic neurons in the substantia nigra pars compacta of aging mice, without altering brain monoamine oxidase B (MAO-B) activity. These results provide new insights in experimental models of PD, indicating that agmatine represents a potential therapeutic tool for the management of cognitive and motor symptoms of PD, together with its neuroprotective effects.

Referência(s)