Artigo Revisado por pares

An exon 10 deletion in the mouse ferrochelatase gene has a dominant-negative effect and causes mild protoporphyria

2002; Elsevier BV; Volume: 100; Issue: 4 Linguagem: Inglês

10.1182/blood-2001-12-0283

ISSN

1528-0020

Autores

Scott T. Magness, Nobuyo Maeda, David A. Brenner,

Tópico(s)

Metabolism and Genetic Disorders

Resumo

Protoporphyria is generally inherited as an autosomal dominant disorder. The enzymatic defect of protoporphyria is a deficiency in ferrochelatase, which chelates iron and protoporphyrin IX to form heme. Patients with protoporphyria have decreased ferrochelatase activities that range from 5% to 30% of normal caused by heterogeneous mutations in the ferrochelatase gene. The molecular mechanism by which the ferrochelatase activity is decreased to less than an expected 50% is unresolved. In this study, we assessed the effect of a ferrochelatase exon 10 deletion, a common mutation in human protoporphyria, introduced into the mouse by gene targeting. F1 crosses produced (+/+), (+/-), and (-/-) mice at a ratio of 1:2:0; (-/-) embryos were detected at 3.5 days postcoitus, consistent with embryonic lethality for the homozygous mutant genotype. Heterozygotes demonstrated equivalent levels of wild-type and mutant ferrochelatase messenger RNAs and 2 immunoreactive proteins that corresponded to the full-length and an exon 10-deleted ferrochelatase protein. Ferrochelatase activities in the heterozygotes were an average of 37% of normal, and protoporphyrin levels were elevated in erythrocytes and bile. Heterozygous mice exhibited skin photosensitivity but no liver disease. These results lend support for a dominant-negative effect of a mutant allele on ferrochelatase activity in patients with protoporphyria.

Referência(s)
Altmetric
PlumX