Artigo Revisado por pares

The Molecular Basis of Anticholinesterase Actions on Nicotinic and Glutamatergic Synapses a

1987; Wiley; Volume: 505; Issue: 1 Linguagem: Inglês

10.1111/j.1749-6632.1987.tb51294.x

ISSN

1749-6632

Autores

Yasco Aracava, S.S. Deshpande, D L Rickett, A. BROSSI, Bernhard Schönenberger, Edson X. Albuquerque,

Tópico(s)

Ion channel regulation and function

Resumo

Annals of the New York Academy of SciencesVolume 505, Issue 1 p. 226-255 The Molecular Basis of Anticholinesterase Actions on Nicotinic and Glutamatergic Synapsesa Y. ARACAVA, Y. ARACAVA Department of Pharmacology and Experimental Therapeutics University of Maryland School of Medicine Baltimore, Maryland 21201Search for more papers by this authorS. S. DESHPANDE, S. S. DESHPANDE Department of Pharmacology and Experimental Therapeutics University of Maryland School of Medicine Baltimore, Maryland 21201Search for more papers by this authorD. L. RICKETT, Corresponding Author D. L. RICKETT Department of Pharmacology and Experimental Therapeutics University of Maryland School of Medicine Baltimore, Maryland 21201 Neurotoxicology Branch, United States Army Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland 21010. Laboratory of Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892. To whom reprint requests should be sent.Search for more papers by this authorA. BROSSI, Corresponding Author A. BROSSI Department of Pharmacology and Experimental Therapeutics University of Maryland School of Medicine Baltimore, Maryland 21201 Neurotoxicology Branch, United States Army Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland 21010. Laboratory of Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892. To whom reprint requests should be sent.Search for more papers by this authorB. SCHÖNENBERGER, Corresponding Author B. SCHÖNENBERGER Department of Pharmacology and Experimental Therapeutics University of Maryland School of Medicine Baltimore, Maryland 21201 Neurotoxicology Branch, United States Army Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland 21010. Laboratory of Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892. To whom reprint requests should be sent.Search for more papers by this authorE. X. ALBUQUERQUE, Corresponding Author E. X. ALBUQUERQUE Department of Pharmacology and Experimental Therapeutics University of Maryland School of Medicine Baltimore, Maryland 21201 Neurotoxicology Branch, United States Army Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland 21010. Laboratory of Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892. To whom reprint requests should be sent.Search for more papers by this author Y. ARACAVA, Y. ARACAVA Department of Pharmacology and Experimental Therapeutics University of Maryland School of Medicine Baltimore, Maryland 21201Search for more papers by this authorS. S. DESHPANDE, S. S. DESHPANDE Department of Pharmacology and Experimental Therapeutics University of Maryland School of Medicine Baltimore, Maryland 21201Search for more papers by this authorD. L. RICKETT, Corresponding Author D. L. RICKETT Department of Pharmacology and Experimental Therapeutics University of Maryland School of Medicine Baltimore, Maryland 21201 Neurotoxicology Branch, United States Army Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland 21010. Laboratory of Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892. To whom reprint requests should be sent.Search for more papers by this authorA. BROSSI, Corresponding Author A. BROSSI Department of Pharmacology and Experimental Therapeutics University of Maryland School of Medicine Baltimore, Maryland 21201 Neurotoxicology Branch, United States Army Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland 21010. Laboratory of Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892. To whom reprint requests should be sent.Search for more papers by this authorB. SCHÖNENBERGER, Corresponding Author B. SCHÖNENBERGER Department of Pharmacology and Experimental Therapeutics University of Maryland School of Medicine Baltimore, Maryland 21201 Neurotoxicology Branch, United States Army Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland 21010. Laboratory of Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892. To whom reprint requests should be sent.Search for more papers by this authorE. X. ALBUQUERQUE, Corresponding Author E. X. ALBUQUERQUE Department of Pharmacology and Experimental Therapeutics University of Maryland School of Medicine Baltimore, Maryland 21201 Neurotoxicology Branch, United States Army Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland 21010. Laboratory of Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892. To whom reprint requests should be sent.Search for more papers by this author First published: August 1987 https://doi.org/10.1111/j.1749-6632.1987.tb51294.xCitations: 19 a This research was supported by United States Army Medical Research and Development Command Contract DAMD17–84-C-4219 and by United States Army Research Office Grant DAAG 29–85-K-0090. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References 1 Lee, C. Y. 1972. Chemistry and pharmacology of polypeptide toxins in snake venoms. Ann. Rev. Pharmacol. 12: 265– 286. 2 Heidmann, T. & J.-P. Changeux. 1978. Structural and functional properties of the acetylcholine receptor protein in its purified and membrane bound states. Ann. Rev. Biochem. 47: 317– 357. 3 Karlin, A. 1980. Molecular properties of nicotinic acetylcholine receptors. In The Cell Surface and Neuronal Function. C. W. Cotman, G. Poste & G. L. Nicolson, Eds.: 191– 260. Elsevier/North Holland Biomedical Press. Amsterdam . 4 Noda, M., Y. Furutani, H. Takahashi, M. Toyosato, T. Tanabe, S. Shimizu, S. Kikyotani, T. Kayano, T. Hirose, S. Inayama, T. Miyata & S. Numa. 1983. Cloning and sequence analysis of calf cDNA and human genomic DNA encoding α-subunit precursor of muscle acetylcholine receptor. Nature (London) 305: 818– 823. 5 Sakmann, B., C. Methfessel, M. Mishina, T. Takahashi, T. Takai, M. Kurasaki, K. Fujuda & S. Numa. 1985. Role of acetylcholine receptor subunits in gating of the channel. J. Physiol. (London) 318: 538– 543. 6 Daly, J. W., I. Karle, C. W. Myers, T. Tokuyama, J. A. Waters & B. Witkop. 1971. Histrionicotoxins: Roentgen-ray analysis of the novel allenic and acetylenic spiroalkaloids isolated from a Colombian frog, Dendrobates histrionicus. Proc. Natl. Acad. Sci. USA 68: 1870– 1875. 7 Albuquerque, E. X., J. W. Daly & J. E. Warnick. 1987. Macromolecular sites for specific neurotoxins and drugs on chemosensitive synapses and electrical excitation in biological membranes. In Ion Channels, Vol. 1. T. Narahashi, Ed. Plenum Press, New York , N.Y. In press. 8 Schofield, G. G., B. Witkop, J. E. Warnick & E. X. Albuquerque. 1981. Differentiation of the open and closed states of the ionic channels of nicotinic acetylcholine receptors by tricyclic antidepressants. Proc. Natl. Acad. Sci. USA 78: 5240– 5244. 9 Carp, J. S., R. S. Aronstam, B. Witkop & E. X. Albuquerque. 1983. Electrophysiological and biochemical studies on enhancement of desensitization by phenothiazine neuroleptics. Proc. Natl. Acad. Sci. USA 80: 310– 314. 10 Albuquerque, E. X., M.-C. Tsai, R. S. Aronstam, B. Witkop, A. T. Eldefrawi & M. E. Eldefrawi. 1980. Sites of action of phencyclidine. II. Interaction with the ionic channel of the nicotinic receptor. Mol. Pharmacol. 18: 167– 178. 11 Neher, E. & J. H. Steinbach. 1978. Local anaesthetics transiently block currents through single acetylcholine receptor channels. J. Physiol. (London) 277: 153– 176. 12 Aracava, Y., S. R. Ikeda, J. W. Daly, N. Brookes & E. X. Albuquerque. 1984. Interactions of bupivacaine with ionic channels of the nicotinic receptor. Analysis of single channel currents. Mol. Pharmacol. 26: 304– 313. 13 Ikeda, S. R., R. S. Aronstam, J. W. Daly, Y. Aracava & E. X. Albuquerque. 1984. Interactions of bupivacaine with ionic channels of the nicotinic receptor. Electrophysiological and biochemical studies. Mol. Pharmacol. 26: 293– 303. 14 Adler, M., E. X. Albuquerque & F. J. Lebeda. 1978. Kinetic analysis of endplate currents altered by atropine and scopolamine. Mol. Pharmacol. 14: 514– 529. 15 Pascuzzo, G. J., A. Akaike, M. A. Maleque, K.-P. Shaw, R. S. Aronstam, D. L. Rickett & E. X. Albuquerque. 1984. The nature of the interactions of pyridostigmine with the nicotinic acetylcholine receptor-ionic channel complex. Mol. Pharmacol. 25: 92– 101. 16 Akaike, A., S. R. Ikeda, N. Brookes, G. J. Pascuzzo, D. L. Rickett & E. X. Albuquerque. 1984. The nature of the interactions of pyridostigmine with the nicotinic acetylcholine receptor-ionic channel complex. II. Patch-clamp studies. Mol. Pharmacol. 25: 102– 112. 17 Shaw, K.-P., Y. Aracava, A. Akaike, J. W. Daly, D. L. Rickett & E. X. Albuquerque. 1985. The reversible cholinestrase inhibitor physostigmine has channel-blocking and agonist effects on the acetylcholine receptor-ion channel complex. Mol. Pharmacol. 28: 527– 538. 18 Spivak, C. E. & E. X. Albuquerque. 1982. Dynamic properties of the nicotinic acetylcholine receptor ionic channel complex: activation and blockade. In Progress in Cholinergic Biology Model Cholinergic Synapses. I. Hanin & A. M. Goldberg, Eds.: 323– 357. Raven Press. New York , NY . 19 Hamill, O. P., A. Marty, E. Neher, B. Sakmann & F. J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391: 85– 100. 20 Colquhoun, D. & B. Sakmann. 1981. Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature (London) 294: 464– 466. 21 Colquhoun, D. & B. Sakmann. 1985. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J. Physiol. (London) 369: 501– 557. 22 Changeux, J.-P., A. Devillers-Thiéry & P. Chemouilli. 1984. Acetylcholine receptor: an allosteric protein. Science 225: 1335– 1345. 23 Albuquerque, E. X., S. S. Deshpande, M. Kawabuchi, Y. Aracava, M. Idriss, D. L. Rickett & A. F. Boyne. 1985. Multiple actions of anticholinesterase agents on chemosensitive synapses: Molecular basis for prophylaxis and treatment of organophosphate poisoning. Fundam. Appl. Toxicol. 5: S182– S203. 24 Fiekers, J. F. 1985. Concentration-dependent effects of neostigmine on the endplate acetylcholine receptor channel complex. J. Neurosci. 5: 502– 514. 25 Albuquerque, E. X., Y. Aracava, M. Idriss, B. Schönenberger, A. Brossi & S. S. Deshpande. 1986. Activation and blockade of the nicotinic and glutamatergic synapses by reversible and irreversible cholinesterase inhibitors. In Neurobiology of Acetylcholine. N. J. Dun & R. L. Perlman. Eds. Plenum Press. New York , NY. In press. 26 Meshul, C. K., A. F. Boyne, S. S. Deshpande & E. X. Albuquerque. 1985. Comparison of the ultrastructural myopathy induced by anticholinesterase agents at the end plates of rat soleus and extensor muscles. Exp. Neurol. 89: 96– 114. 27 Deshpande, S. S., G. B. Viana, F. C. Kauffman, D. L. Rickett & E. X. Albuquerque. 1986. Effectiveness of physostigmine as a pre-treatment drug for protection of rats from organophosphate poisoning. Fundam. Appl. Toxicol. 6: 566– 577. 28 Albuquerque, E. X., S. S. Deshpande, Y. Aracava, M. Alkondon & J. W. Daly. 1986. A possible involvement of cyclic AMP in the expression of desensitization of the nicotinic acetylcholine receptor. A study with forskolin and its analogs. FEBS Lett. 199: 113– 120. 29 Takeuchi, A. & N. Takeuchi. 1959. Active phase of frog's endplate potential. J. Neurophysiol. 22: 395– 411. 30 Kuba, K., E. X. Albuquerque, J Daly & E. A. Barnard. 1974. A study of the irreversible cholinesterase inhibitor, diisopropylfluorophosphate, on time course of endplate currents in frog sartorius muscle. J. Pharmacol. Exp. Ther. 189: 499– 512. 31 Albuquerque, E. X. & R. J. McIsaac. 1970. Fast and slow mammalian muscles after denervation. Exp. Neurol. 26: 183– 202. 32 McArdle, J. J. & E. X. Albuquerque. 1973. A study of reinnervation of fast and slow mammalian muscles. J. Gen. Physiol. 61: 1– 2. 33 Albuquerque, E. X., E. A. Barnard, C. W. Porter & J. E. Warnick. 1974. The density of acetylcholine receptors and their sensitivity in the postsynaptic membrane of muscle endplates. Proc. Natl. Acad. Sci. USA 71: 2818– 2822. 34 Allen, C. N., A. Akaike & E. X. Albuquerque. 1984. The frog interosseal muscle fiber as a new model for patch clamp studies of chemosensitive and voltage-sensitive ion channels. Actions of acetylcholine and batrachotoxin. J. Physiol. (Paris) 79: 338– 343. 35 Ruff, R. L. 1977. A quantitative analysis of local anaesthetic alteration of miniature endplate current fluctuations. J. Physiol. (London) 264: 89– 124. 36 Sherby, S. M., A. T. Eldefrawi, E. X. Albuquerque & M. E. Eldefrawi. 1985. Comparison of the actions of carbamate anticholinesterase on the nicotinic acetylcholine receptor. Mol. Pharmacol. 27: 343– 348. 37 Magleby, K. L. & C. F. Stevens. 1972. A quantitative description of end-plate currents. J. Physiol. (London) 233: 173– 197. 38 Anderson, C. R. & C. F. Stevens. 1973. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J. Physiol. (London) 235: 655– 691. 39 Magleby, K. L. & D. A. Terrar. 1975. Factors affecting the time course of decay of endplate currents: A possible cooperative action of acetylcholine on receptors at the frog neuromuscular junction. J. Physiol. (London) 244: 467– 495. 40 Spivak, C. E. & E. X. Albuquerque. 1985. Triphenylmethylphosphonium blocks the nicotinic acetylcholine receptor noncompetitively. Mol. Pharmacol. 27: 246– 255. 41 Woodhull, A. M. 1973. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61: 687– 708. 42 Sine, S. M. & J. H. Steinbach. 1984. Agonists block currents through acetylcholine receptor channel. Biophys. J. 46: 277– 283. 43 Varanda, W. A., Y. Aracava, S. M. Sherby, W. G. Van Meter, M. E. Eldefrawi & E. X. Albuquerque. 1985. The acetylcholine receptor of the neuromuscular junction recognizes mecamylamine as a noncompetitive antagonist. Mol. Pharmacol. 28: 128– 137. 44 Rao, K. S., Y. Aracava, D. L. Rickett & E. X. Albuquerque. 1987. Noncompetitive blockade of the nicotinic acetylcholine receptor ion channel complex by an irreversible cholinesterase inhibitor. J. Pharmacol. Exp. Ther. 240: 337– 344. 45 Albuquerque, E. X., A. Akaike, K.-P. Shaw & D. L. Rickett. 1984. The interaction of anticholinesterase agents with the acetylcholine receptor-ionic channel complex. Fundam. Appl. Toxicol. 4: S27– S33. 46 Spivak, C. E., J. Waters, B. Witkop & E. X. Albuquerque. 1983. Potencies and channel properties induced by semirigid agonists at frog nicotinic acetylcholine receptors. Mol. Pharmacol. 23: 337– 343. 47 Maleque, M. A., C. Souccar, J. B. Cohen & E. X. Albuquerque. 1982. Meproadifen reaction with the ionic channel of the acetylcholine receptor: potentiation of agonist-induced desensitization at the frog neuromuscular junction. Mol. Pharmacol. 22: 36– 647. 48 Aracava, Y. & E. X. Albuquerque. 1984. Meproadifen enhances activation and desensitization of the acetylcholine receptor-ion channel complex (AChR): Single channel studies. FEBS Lett. 174: 267– 274. 49 Albuquerque, E. X., K. Kuba & J. Daly. 1974. Effect of histrionicotoxin on the ionic conductance modulator of the cholinergic receptor: A quantitative analysis of the endplate current. J. Pharmacol. Exp. Ther. 189: 513– 524. 50 Masukawa, L. M. & E. X. Albuquerque. 1978. Voltage- and time-dependent action of histrionicotoxin on the endplate current of the frog muscle. J. Gen. Physiol. 72: 351– 367. 51 Spivak, C. E., M. A. Maleque, A. C. Oliveira, L. M. Masukawa, T. Tokuyama, J. W. Daly & E. X. Albuquerque. 1982. Actions of histrionicotoxins at the ionic channel of the nicotinic acetylcholine receptor and at the voltage-sensitive ion channels of the muscle membranes. Mol. Pharmacol. 21: 351– 361. 52 Aracava, Y. & E. X. Albuquerque. 1985. Perhydrohistrionicotoxin (H12HTX) enhances receptor desensitization while the analogs depentyl-H 12HTX and benzylazaspiro-HTX interact with the acetylcholine receptor-ion channel (AChR) complex primarily as open channel blockers. Biophys. J. 47: 259a. 53 Sakmann, B., J. Patlak & E. Neher. 1980. Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature (London) 286: 71– 73. 54 Oswald, R. E. & J.-P. Changeux. 1981. Selective labeling of the δ subunit of the acetylcholine receptor by a covalent local anesthetic. Biochemistry 20: 7166– 7174. 55 Teichberg, V. I., A. Sobel & J.-P. Changeux. 1977. In vitro phosphorylation of the acetylcholine receptor. Nature (London) 267: 540– 542. 56 Huganir, R. L. & P. Greengard. 1983. cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 80: 1130– 1134. 57 Levitan, I. B. 1985. Phosphorylation of ion channels. J. Membr. Biol. 87: 177– 190. 58 Swanson, K. L., C. N. Allen, R. S. Aronstam, H. Rapoport & E. X. Albuquerque. 1986. Molecular mechanisms of the potent and stereospecific nicotinic receptor agonist (+)-Anatoxin-a. Mol. Pharmacol. 29: 250– 257. 59 Spivak, C. E., M. A. Maleque, K. Takahashi, A. Brossi & E. X. Albuquerque. 1983. The ionic channel of the nicotinic acetylcholine receptor is unable to differentiate between the optical antipodes of perhydrohistrionicotoxin. FEBS Lett. 163: 189– 193. 60 Cintra, W. M., M. Kawabuchi, A. F. Boyne, S. S. Deshpande & E. X. Albuquerque. 1986. Protection by (+) physostigmine, the enantiomer of the natural physostigmine, against lethality and myopathy induced by an irreversible organophosphorus agent. Neurosci. Abstr. 12: 740. 61 Idriss, M. K., L. G. Aguayo, D. L. Rickett & E. X. Albuquerque. 1986. Organophosphate and carbamate compounds have pre- and postjunctional effects at the insect glutamatergic synapse. J. Pharmacol. Exp. Ther. 239: 279– 285. 62 Idriss, M. & E. X. Albuquerque. 1985. Phencyclidine (PCP) blocks glutamate-activated postsynaptic currents. FEBS Lett. 189: 150– 156. Citing Literature Volume505, Issue1Myasthenia Gravis: Biology and TreatmentAugust 1987Pages 226-255 ReferencesRelatedInformation

Referência(s)