Artigo Revisado por pares

COMPETITION STUDIES OF MARINE MACROALGAE IN LABORATORY CULTURE

1990; Wiley; Volume: 26; Issue: 1 Linguagem: Inglês

10.1111/j.0022-3646.1990.00018.x

ISSN

1529-8817

Autores

Christine A. Maggs, Donald P. Cheney,

Tópico(s)

Marine Biology and Ecology Research

Resumo

Journal of PhycologyVolume 26, Issue 1 p. 18-24 COMPETITION STUDIES OF MARINE MACROALGAE IN LABORATORY CULTURE Christine A. Maggs, Christine A. Maggs Department of Biology, Queen's University of Belfast, Belfast, Northern Ireland BT7 INNSearch for more papers by this authorDonald P. Cheney, Corresponding Author Donald P. Cheney Biology Department, Northeastern University, Boston, Massachusetts 02115Address for reprint requests.Search for more papers by this author Christine A. Maggs, Christine A. Maggs Department of Biology, Queen's University of Belfast, Belfast, Northern Ireland BT7 INNSearch for more papers by this authorDonald P. Cheney, Corresponding Author Donald P. Cheney Biology Department, Northeastern University, Boston, Massachusetts 02115Address for reprint requests.Search for more papers by this author First published: March 1990 https://doi.org/10.1111/j.0022-3646.1990.00018.xCitations: 44 D.P.C. would like to thank Arthur Mathieson for his support of the Chondrus work. Cliff Duke for help with Gracilaria studies and John van tier Meet for green mutants of both genera. G.A.M. gratefully acknowledges helpful discussions with Hugh Fletcher and Matthew Dring. Question (Paine): Performance could be measured, at the least, as thallus mortality, reproductive output or growth rate. If laboratory generated plants were outplanted to a variety of natural (field) conditions, what differences in these factors would you expect to observe in homokaryotic versus heterokaryotic plants? Answer: We have no evidence as to the significance, even in culture, of the formation of heterokaryotic cells and chimeric fronds. Until there is some understanding of the role of multiple nuclei, including those of different genotypes, no theoretical prediction can be made. Question (Carpenter): Within an algal species, is there evidence for more frequent sporeling or holdfast coalescence in particular physical or biological environments, such as across a desiccation gradient or in environments with high versus low grazer abundance, that would give genotypes that coalesce a physiological or deterrent advantage? Answer: It is notable that red algae with extensive crustose holdfasts, such as Chondrus crispus, Ahnfeltia plicata and Mastocarpus stellatus, are among the most characteristic species in habitats subject to both severe grazing and mechanical disturbance. It seems likely that their success is related partly to their formation or coalesced holdfast groups because extensive holdfasts are important in these environments, and coalescence leads to a rapid increase in holdfast area. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Aberg, P. 1989. Distinguishing between genetic individuals in Ascophyllum nodosum populations on the Swedish west coast. Br. Phycol. J. 24: 183–90. 10.1080/00071618900650171 Web of Science®Google Scholar Afonso-Carrillo, J. 1985. Cónexiones intercelulares entre diferentes talos de Neogoniolithon absimile (Foslie et Howe) Cabioch (Corallinaceae, Rhodophyta). Vieraea 15: 139–42. Google Scholar Bauman, R. W. & Jones, B. R. 1980. Electrophysiological investigations of the red alga Griffithsia pacifica Kyl. J. Phycol. 22: 49–50. 10.1111/j.1529-8817.1986.tb02514.x Web of Science®Google Scholar Buss, L. W. 1981. Group living, competition, and the evolution of cooperation in a sessile invertebrate. Science (Wash. D.C.) 213: 1012–4. 10.1126/science.213.4511.1012 CASPubMedWeb of Science®Google Scholar Cabioch, J. 1970. Sur l'importance des phenomènes cytologiques pour la systématique et la phylogenic des Corallinacées (Rhodophycées, Cryptoncmiales). C. R. Hebd. Séanc. Acad. Sci. Paris. Sér. D 271: 296–9. Web of Science®Google Scholar Carpenter, R. C. 1990. Competition among marine macroalgae: a physiological perspective. J. Phycol. 26: 6–12. 10.1111/j.0022-3646.1990.00006.x Web of Science®Google Scholar Chen, L. C-M. & Taylor, A. R. A. 1970. Scanning electron microscopy of early sporeling ontogeny of Chondrus crispus. Can. J. Bot. 54: 672–8. 10.1139/b76-071 Google Scholar Cheney, D. P. 1978. On the ecological and evolutionary significance of vegetative reproduction in seaweeds. J. Phycol. 14 (Suppl): 27. Web of Science®Google Scholar Cheney, D. P. 1990. Genetic improvement of seaweeds through protoplast fusion. In C. Yarish & C. Penniman [Eds.] Economically Important Marine Plants of the Atlantic: Their Biology and Cultivation. University of Connecticut Sea Grant Program, PP. 15–25. Web of Science®Google Scholar Codomier, L. 1973, Sur de développement des spores et la formation du thalle rampant de Kallymenia microphylla J. Ag. (Rhodophyceae. Cryptonemiales). G. Bot. Ital. 107: 209–80. 10.1080/11263507309427938 Google Scholar Dale, M. R. T. 1985. A geometric technique for evaluating lichen growth models using the boundaries of competing lichen thalli. Lichenologist 17: 141–8. 10.1017/S0024282985000196 Web of Science®Google Scholar Dayton, P. K. 1971. Competition, disturbance and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41: 351–89. 10.2307/1948498 Web of Science®Google Scholar Dayton, P. K. 1975. Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecol. Monogr. 45: 137–49. 10.2307/1942404 Web of Science®Google Scholar Fletcher, R. L. 1975. Heteroantagonism observed in mixed algal cultures. Nature (Lond.) 253: 534–5. 10.1038/253534a0 CASPubMedWeb of Science®Google Scholar Goff, L. J. & Coleman, A. W. 1985. The role of secondary pit connections in red algal parasitism. J. Phycol. 21: 483–508. 10.1111/j.0022-3646.1985.00483.x Web of Science®Google Scholar Goff, L. J. 1986. A novel pattern of apical cell polyploidy, sequential polyploidy reduction and intercellular nuclear transfer in the red alga Polysiphonia. Am. J. Bot. 73: 1109–30. 10.1002/j.1537-2197.1986.tb08558.x CASWeb of Science®Google Scholar Hansen, G. I. 1977. Cirrulicarpus carolincnsis. a new species in the Kallymeniaceae (Rhodophyta). Occas. Pap. Farlow Herb. 12: 1–22. Google Scholar Hay, M. E. 1981. The functional morphology of turf-forming seaweeds: persistence in stressful marine habitats. Ecology 62: 739–50. 10.2307/1937742 Web of Science®Google Scholar Jones, W. E. 1956. Effect of spore coalescence on the early development of Gracilaria verrucosa (Hudson) Papenfuss. Nature (Lond.) 178: 426–7. 10.1038/178426b0 PubMedWeb of Science®Google Scholar Khfaji, A. K. & Boney, A. D. 1979. Antibiotic effects of crustose gemilings of the red alga Chondrus crispus Stackh. on benthic diatoms. Ann. Bot. 43: 231–2. Web of Science®Google Scholar Kooistra, W., Joosten, A. & van den Hoek, D. 1989. Zonation patterns in intertidal pools and their possible causes: a multivariate approach. Bot. Mar. 32: 9–26. 10.1515/botm.1989.32.1.9 Web of Science®Google Scholar Maggs, C. A. 1988. Intraspecific life history variability in the Florideophycidae (Rhodophyta). Bot. Mar. 31: 465–90. 10.1515/botm.1988.31.6.465 Web of Science®Google Scholar Maggs, C. A. 1989. Erethrodermis allenii Batters in the life history of Phyllophora traillii Holmes ex Batters (Phyllophoraceae, Rhodophyta). Phycolagia. In press. Google Scholar Maggs, C. A., McLachlan, J. L. & Saunders, G. W. 1989. Infra-generic taxonomy of Ahnfeltia (Ahnfeltiales, Rhodophyta). J. Phycol 25: 351–68. 10.1111/j.1529-8817.1989.tb00132.x Web of Science®Google Scholar Maggs, C. A. & Pueschel, C. M. 1989. A morphological and developmental study of Ahnfeltia plicata (Rhodophyta): proposal of Ahnfeltiales ord. nov. J. Phycol. 25: 333–51. 10.1111/j.1529-8817.1989.tb00131.x Web of Science®Google Scholar Mshigeni, K. 1974. An extended review of the literature on Hypnea, a red algal genus. Technical Report No. 2, Marine Agronomy, US Sea Grant Program. University of Hawaii. 221 pp. Google Scholar Oliveira, E. C. de & Plastino, E. M. 1984. The life history of some species of Gracilaria from Brazil. Jap. J. Phycol. 32: 203–8. Google Scholar Paine, R. T. 1990. Benthic macroalgal competition: complications and consequences. J. Phycol. 26: 12–7. 10.1111/j.0022-3646.1990.00012.x Web of Science®Google Scholar Pentecost, A. 1980. Aspects of competition in saxicolous lichen communities. Lichenologist 12: 135–44. 10.1017/S0024282980000060 Web of Science®Google Scholar Pueschel, C. M. 1988. Secondary pit connections in Hildenbrandia (Rhodophyta, Hildenbrandiales). Br. Phycol. J. 23: 25–32. 10.1080/00071618800650031 Web of Science®Google Scholar Pueschel, C. M. & Cole, K. M. 1982. Rhodophycean pit plugs: an ultrastructural survey with taxonomic implications. Am. J. Bot. 69: 703–20. 10.1002/j.1537-2197.1982.tb13310.x CASWeb of Science®Google Scholar Rosenvinge, L. K. 1931. The marine algae of Denmark, contributions to their natural history. Part IV. Rhodophyceae, IV. Gigartinales, Rhodymeniales, Nemastomatales. K. Danske Vidensk. Selsk. 7, 7: 499–599. Google Scholar Rueness, J. 1978. A note on development and reproduction in Gigartina stellata (Rhodophyta. Gigartinales) from Norway. Br. Phycol. J. 13: 87–90. 10.1080/00071617800650101 Web of Science®Google Scholar Russell, G. & Fielding, A. 1974. The competitive properties of marine algae in culture. J. Ecol. 62: 689–98. 10.2307/2258949 Web of Science®Google Scholar Santelices, B., Montalva, S. & Oliger, P. 1981. Competitive algal community organization in exposed intertidal habitats from central Chile. Mar. Ecol. Progr. Ser. 6: 267–76. 10.3354/meps006267 Web of Science®Google Scholar Saunders, G. W., Maggs, C. A. & McLachlan, J. 1989. Life history variation in Rhodophysema elegans (Rhodophyta) from the North Atlantic and crustose Rhodophysema spp. from the North Pacific. Can. J. Bot. In press. Google Scholar Taylor, A. R. A., Chen, L. C-M., Smith, B. & Staples, L. 1981. Chondrus holdfasts in natural populations and in culture. Proc. Int. Seaweed Symp. 8: 140–5. Google Scholar Templeton, A. & Levin, D. 1979. Evolutionary consequences of seed pools. Am. Nat. 114: 232–49. 10.1086/283471 Web of Science®Google Scholar Tveter, E. & Mathieson, A. C. 1976. Sporeling coalescence in Chondrus crispus (Rhodophyceae). J. Phycol. 12: 110–8. 10.1111/j.1529-8817.1976.tb02837.x Web of Science®Google Scholar Tveter-Gallagher, E. & Mathieson, A. C. 1980. An electron microscopic study of sporeling coalescence in the red alga Chondrus crispus. Scanning Electron Microsc. 1980: 571–80. Google Scholar van der Meer, J. P. 1986. Genetic contributions to research on seaweeds. Prog Phycol. Res. 4: 1–38. Google Scholar van der Meer, J. P. & Todd, F. R. 1977. Genetics of Gracilaria sp. (Rhodophyceae, Gigartinales). IV. Mitotic recombination and its relationship to mixed phases in the life history. Can. J. Bot. 55: 2810–7. 10.1139/b77-319 Google Scholar Waaland, S. 1978. Parasexually produced hybrids between female and male plants of (Griffithsia tenuis C. Agardh, a red alga. Planta (Berl.) 138: 65–8. 10.1007/BF00392917 PubMedWeb of Science®Google Scholar West, J. A. & Hommersand, M. H. 1981. Rhodophyta: life histories. In C. S. Lobban & M. J. Wynne [Eds.] The Biology of Seaweeds. University of California Press, Berkeley , pp. 133–93. Google Scholar Citing Literature Volume26, Issue1March 1990Pages 18-24 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX