Artigo Revisado por pares

The Quadratic Numerical Range and the Location of Zeros of Polynomials

2003; Society for Industrial and Applied Mathematics; Volume: 25; Issue: 1 Linguagem: Inglês

10.1137/s0895479802411651

ISSN

1095-7162

Autores

Hansjörg Linden,

Tópico(s)

Advanced Optimization Algorithms Research

Resumo

Previous article Next article The Quadratic Numerical Range and the Location of Zeros of PolynomialsHansjörg LindenHansjörg Lindenhttps://doi.org/10.1137/S0895479802411651PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstractContainment regions for the zeros of a monic polynomial are given with the aid of the quadratic numerical range of different types of companion matrices of the polynomial.[1] A. Abdurakhmanov, Geometry of a Hausdorff domain in problems of localization of the spectrum of arbitrary matrices, Mat. Sb. (N.S.), 131(173) (1986), 0–040–51, 126 88e:47010 Google Scholar[2] Yuri Alpin, , Mao‐Ting Chien and , Lina Yeh, The numerical radius and bounds for zeros of a polynomial, Proc. Amer. Math. Soc., 131 (2003), 725–730 10.1090/S0002-9939-02-06623-6 2003h:26021 CrossrefISIGoogle Scholar[3] Mao‐Ting Chien, On the numerical range of tridiagonal operators, Linear Algebra Appl., 246 (1996), 203–214 10.1016/0024-3795(94)00353-X 97i:47007 CrossrefISIGoogle Scholar[4] Emeric Deutsch, Matricial norms and the zeros of polynomials, Linear Algebra and Appl., 3 (1970), 483–489 10.1016/0024-3795(70)90038-8 42:4003 CrossrefGoogle Scholar[5] Emeric Deutsch, Matricial norms and the zeros of lacunary polynomials, Linear Algebra and Appl., 6 (1973), 143–148 10.1016/0024-3795(73)90012-8 47:439 CrossrefGoogle Scholar[6] Masatoshi Fujii and , Fumio Kubo, Operator norms as bounds for roots of algebraic equations, Proc. Japan Acad., 49 (1973), 805–808 51:565 CrossrefGoogle Scholar[7] Masatoshi Fujii and , Fumio Kubo, Buzano's inequality and bounds for roots of algebraic equations, Proc. Amer. Math. Soc., 117 (1993), 359–361 93d:47014 ISIGoogle Scholar[8] Karl Gustafson and , Duggirala Rao, Numerical range, Universitext, Springer‐Verlag, 1997xiv+189, The field of values of linear operators and matrices 98b:47008 CrossrefGoogle Scholar[9] Roger Horn and , Charles Johnson, Topics in matrix analysis, Cambridge University Press, 1991viii+607 92e:15003 CrossrefGoogle Scholar[10] Dennis Keeler, , Leiba Rodman and , Ilya Spitkovsky, The numerical range of 3×3 matrices, Linear Algebra Appl., 252 (1997), 115–139 10.1016/0024-3795(95)00674-5 97k:15062 CrossrefISIGoogle Scholar[11] Heinz Langer and , Christiane Tretter, Spectral decomposition of some nonselfadjoint block operator matrices, J. Operator Theory, 39 (1998), 339–359 99d:47004 Google Scholar[12] Heinz Langer, , Alexander Markus and , Christiane Tretter, Corners of numerical ranges, Oper. Theory Adv. Appl., Vol. 124, Birkhäuser, Basel, 2001, 385–400 2002i:47004 Google Scholar[13] H. Langer, , A. Markus, , V. Matsaev and , C. Tretter, A new concept for block operator matrices: the quadratic numerical range, Linear Algebra Appl., 330 (2001), 89–112 10.1016/S0024-3795(01)00230-0 2002b:47015 CrossrefISIGoogle Scholar[14] Hansjörg Linden, Bounds for the zeros of polynomials from eigenvalues and singular values of some companion matrices, Linear Algebra Appl., 271 (1998), 41–82 10.1016/S0024-3795(97)00254-1 98m:65059 CrossrefISIGoogle Scholar[15] Hansjörg Linden, Numerical radii of some companion matrices and bounds for the zeros of polynomials, Math. Appl., Vol. 478, Kluwer Acad. Publ., Dordrecht, 1999, 205–229 2001i:15031 Google Scholar[16] Hansjörg Linden, Containment regions for zeros of polynomials from numerical ranges of companion matrices, Linear Algebra Appl., 350 (2002), 125–145 2003d:30008 CrossrefISIGoogle Scholar[17] Morris Marden, Geometry of polynomials, Second edition. Mathematical Surveys, No. 3, American Mathematical Society, 1966xiii+243 37:1562 Google Scholar[18] John McNamee, A bibliography on roots of polynomials, J. Comput. Appl. Math., 47 (1993), 391–394, With 1 IBM‐PC floppy disk (3.5 inch; HD) 10.1016/0377-0427(93)90064-I 94j:65001 CrossrefISIGoogle Scholar[19] J. M. McNamee, A supplementary bibliography on roots of polynomials, J. Comput. Appl. Math., 78 (1997), p. 1. jmh JCAMDI 0377-0427 J. Comput. Appl. Math. CrossrefISIGoogle Scholar[20] J. M. McNamee, An updated supplementary bibliography on roots of polynomials, J. Comput. Appl. Math., 110 (1999), pp. 305–306. jmh JCAMDI 0377-0427 J. Comput. Appl. Math. CrossrefISIGoogle Scholar[21] John McNamee, A 2002 update of the supplementary bibliography on roots of polynomials, J. Comput. Appl. Math., 142 (2002), 433–434 10.1016/S0377-0427(01)00546-5 1906741 CrossrefISIGoogle Scholar[22] G. Milovanović, , D. Mitrinović and , Th. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Publishing Co. Inc., 1994xiv+821 95m:30009 CrossrefGoogle Scholar[23] Maurice Parodi, La localisation des valeurs caractéristiques des matrices et ses applications. Préface de H. Villat, Traité de Physique Théorique et de Physique Mathématique, XII, Gauthier‐Villars, 1959xi+172 22:1587 Google ScholarKeywordsquadratic numerical rangecompanion matrixzeros of polynomials Previous article Next article FiguresRelatedReferencesCited ByDetails The block numerical range of matrix polynomialsApplied Mathematics and Computation, Vol. 211, No. 2 | 1 May 2009 Cross Ref Scaled generalized Bernstein polynomials and containment regions for the zeros of polynomialsJournal of Computational and Applied Mathematics, Vol. 206, No. 1 | 1 Sep 2007 Cross Ref Volume 25, Issue 1| 2003SIAM Journal on Matrix Analysis and Applications1-300 History Published online:31 July 2006 InformationCopyright © 2003 Society for Industrial and Applied MathematicsKeywordsquadratic numerical rangecompanion matrixzeros of polynomialsMSC codes15A6026C1030C1565H05PDF Download Article & Publication DataArticle DOI:10.1137/S0895479802411651Article page range:pp. 266-284ISSN (print):0895-4798ISSN (online):1095-7162Publisher:Society for Industrial and Applied Mathematics

Referência(s)