Today’s Computational Methods of Linear Algebra
1967; Society for Industrial and Applied Mathematics; Volume: 9; Issue: 3 Linguagem: Inglês
10.1137/1009071
ISSN1095-7200
Autores Tópico(s)Iterative Methods for Nonlinear Equations
ResumoPrevious article Next article Today's Computational Methods of Linear AlgebraGeorge E. ForsytheGeorge E. Forsythehttps://doi.org/10.1137/1009071PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] F. L. Bauer, C. M. Popplewell, Optimal scaling of matrices and the importance of minimal conditionInformation Processing, North Holland, Amsterdam, 1962, 198–201 0135.37501 Google Scholar[2] F. L. Bauer, Optimally scaled matrices, Numer. Math., 5 (1963), 73–87 10.1007/BF01385880 MR0159412 0107.10501 CrossrefGoogle Scholar[3] Richard Bellman, Introduction to matrix analysis, McGraw-Hill Book Co., Inc., New York, 1960xx+328 MR0122820 0124.01001 Google Scholar[4] D. Corneil, Masters Thesis, Eigenvalues and orthogonal eigenvectors of real symmetric matrices, Master's thesis, Department of Computer Science, University of Toronto, Toronto, 1965 Google Scholar[5] George B. Dantzig, Linear programming and extensions, Princeton University Press, Princeton, N.J., 1963xvi+625 MR0201189 0108.33103 CrossrefGoogle Scholar[6] Paul S. Dwyer, Linear Computations, John Wiley & Sons Inc., New York, 1951xi+344 MR0043554 0044.12804 Google Scholar[7] P. J. Eberlein, A Jacobi-like method for the automatic computation of eigenvalues and eigenvectors of an arbitrary matrix, J. Soc. Indust. Appl. Math., 10 (1962), 74–88, errata p. 393 10.1137/0110007 MR0139264 0104.34401 LinkISIGoogle Scholar[8] D. K. Faddeev and , V. N. Faddeeva, Computational methods of linear algebra, Translated by Robert C. Williams, W. H. Freeman and Co., San Francisco, 1963xi+621 MR0158519 Google Scholar[9] V. N. Faddeeva, Computational methods of linear algebra, Dover Publications Inc., New York, 1959xi+252 MR0100344 0086.10802 Google Scholar[10] George E. Forsythe, Solving linear algebraic equations can be interesting, Bull. Amer. Math. Soc., 59 (1953), 299–329 MR0056372 0050.34603 CrossrefISIGoogle Scholar[11] G. E. Forsythe and , P. Henrici, The cyclic Jacobi method for computing the principal values of a complex matrix, Trans. Amer. Math. Soc., 94 (1960), 1–23 MR0109825 0092.32504 CrossrefGoogle Scholar[12] George E. Forsythe and , Cleve B. Moler, Computer solution of linear algebraic systems, Prentice-Hall Inc., Englewood Cliffs, N.J., 1967xi+148 MR0219223 0154.40401 Google Scholar[13] George E. Forsythe and , Wolfgang R. Wasow, Finite-difference methods for partial differential equations, Applied Mathematics Series, John Wiley & Sons Inc., New York, 1960x+444 MR0130124 0099.11103 Google Scholar[14] L. Fox, An introduction to numerical linear algebra, Monographs on Numerical Analysis, Clarendon Press, Oxford, 1964xi+295 MR0164436 0122.35701 Google Scholar[15] L. Fox, , P. Henrici and , C. Moler, Approximations and bounds for eigenvalues of elliptic operators, SIAM J. Numer. Anal., 4 (1967), 89–102 10.1137/0704008 MR0215542 0148.39502 LinkGoogle Scholar[16] J. G. F. Francis, The $QR$ transformation: a unitary analogue to the $LR$ transformation. I, Comput. J., 4 (1961/1962), 265–271 10.1093/comjnl/4.3.265 MR0130111 0104.34304 CrossrefISIGoogle Scholar[17] J. G. F. Francis, The $QR$ transformation. II, Comput. J., 4 (1961/1962), 332–345 10.1093/comjnl/4.4.332 MR0137289 0104.34304 CrossrefISIGoogle Scholar[18] Wallace Givens, Numerical conputation of the characteristic values of a real symmetric matrix, Rep. ORNL 1574, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1954vi+107 MR0063771 0055.35005 CrossrefGoogle Scholar[19] G. Golub and , W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 205–224 MR0183105 0194.18201 LinkGoogle Scholar[20] H. H. Goldstine, , F. J. Murray and , J. von Neumann, The Jacobi method for real symmetric matrices, J. Assoc. Comput. Mach., 6 (1959), 59–96 MR0102171 0092.12806 CrossrefISIGoogle Scholar[21] Herman H. Goldstine and , John von Neumann, Numerical inverting of matrices of high order. II, Proc. Amer. Math. Soc., 2 (1951), 188–202, (See [41].) MR0041539 0043.12301 CrossrefISIGoogle Scholar[22] J. Greenstadt, A method for finding roots of arbitrary matrices, Math. Tables Aids Comput., 9 (1955), 47–52 MR0073283 0065.24801 CrossrefGoogle Scholar[23] Eldon R. Hansen, On cyclic Jacobi methods, J. Soc. Indust. Appl. Math., 11 (1963), 448–459 10.1137/0111032 MR0156458 0118.12201 LinkISIGoogle Scholar[24] Eldon Hansen, Interval arithmetic in matrix computations. I, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 308–320 MR0187381 0135.37303 LinkGoogle Scholar[25] Peter Henrici, On the speed of convergence of cyclic and quasicyclic Jacobi methods for computing eigenvalues of Hermitian matrices, J. Soc. Indust. Appl. Math., 6 (1958), 144–162 10.1137/0106008 MR0095582 0097.32601 LinkISIGoogle Scholar[26] Peter Henrici, The quotient-difference algorithm, Nat. Bur. Standards Appl. Math. Ser. no., 49 (1958), 23–46 MR0094901 0136.12803 Google Scholar[27] Magnus R. Hestenes and , Eduard Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952), 409–436 (1953) MR0060307 0048.09901 CrossrefISIGoogle Scholar[28] Alston S. Householder, The theory of matrices in numerical analysis, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964xi+257 MR0175290 0161.12101 Google Scholar[29] Alston S. Householder and , Friedrich L. Bauer, On certain methods for expanding the characteristic polynomial, Numer. Math., 1 (1959), 29–37 10.1007/BF01386370 MR0100962 0089.11802 CrossrefGoogle Scholar[30] M. A. Hyman, Eigenvalues and eigenvectors of general matrices, paper presented to Twelfth National Meeting of Association for Computing Machinery, Houston, Texas, 1957 Google Scholar[31] C. G. J. Jacobi, Über ein leichtes Verfahren, die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen, J. Reine Angew. Math., 30 (1846), 51–95 CrossrefGoogle Scholar[32] W. Kahan, Numerical linear algebra, Canad. Math. Bull., to appear Google Scholar[33] W. Kahan and , J. Varah, Two working algorithms for the eigenvalues of a symmetric tridiagonal matrix, Tech. Rep., CS43, Computer Science Department, Stanford University, Stanford, California, 1966 Google Scholar[34] V. V. Klyuyev and , N. I. Kokovkin-Shcherbak, On the minimization of the number of arithmetic operations for the solution of linear algebraic systems of equations, Tech. Rep., CS24, Computer Science Department, Stanford University, Stanford, California, 1965 Google Scholar[35] V. N. Kublanovskaja, O nekotoryh algorifmah dlja rešenija polnoi˘ problemy sobstvennyh značenii˘, Ž. Vyčisl. Mat. i Mat. Fiz., 1 (1961), 555–570 Google Scholar[36] Cornelius Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Research Nat. Bur. Standards, 45 (1950), 255–282 MR0042791 CrossrefISIGoogle Scholar[37] Mark Lotkin, Characteristic values of arbitrary matrices, Quart. Appl. Math., 14 (1956), 267–275 MR0090576 0073.33804 CrossrefGoogle Scholar[38] Marvin Marcus and , Henryk Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon Inc., Boston, Mass., 1964xvi+180 MR0162808 0126.02404 Google Scholar[39] C. B. Moler, Iterative refinement in floating-point, J. Assoc. Comput. Mach., 14 (1967), 316–321 0161.35501 CrossrefISIGoogle Scholar[40] Ramon E. Moore, L. B. Rall, The automatic analysis and control of error in digital computation based on the use of interval numbersError in Digital Computation, Vol. 1 (Proc. Advanced Sem. Conducted by Math. Res. Center, U.S. Army, Univ. Wisconsin, Madison, Wis., 1964), Wiley, New York, 1965, 61–130 MR0176614 0202.45002 Google Scholar[41] John Von Neumann and , H. H. Goldstine, Numerical inverting of matrices of high order, Bull. Amer. Math. Soc., 53 (1947), 1021–1099, (See [21].) MR0024235 0031.31402 CrossrefISIGoogle Scholar[42] B. Noble, Applied Linear Algebra, Prentice-Hall, Englewood Cliffs, New Jersey, 1966, preliminary Google Scholar[43] J. M. Ortega, On Sturm sequences for tridiagonal matrices, J. Assoc. Comput. Mach., 7 (1960), 260–263 MR0115271 0208.18101 CrossrefISIGoogle Scholar[44] James M. Ortega, An error analysis of Householder's method for the symmetric eigenvalue problem, Numer. Math., 5 (1963), 211–225 10.1007/BF01385892 MR0157477 0115.34501 CrossrefGoogle Scholar[45] James M. Ortega and , Henry F. Kaiser, The $LL\sp{T}$ and $QR$ methods for symmetric tridiagonal matrices, Comput. J., 6 (1963/1964), 99–101 10.1093/comjnl/6.1.99 MR0156456 0113.32005 CrossrefISIGoogle Scholar[46] Alexander Ostrowski, Über die Stetigkeit von charakteristischen Wurzeln in Abhängigkeit von den Matrizenelementen, Jber. Deutsch. Math. Verein., 60 (1957), 40–42 MR0089171 0077.02302 Google Scholar[47] Beresford Parlett, Laguerre's method applied to the matrix eigenvalue problem, Math. Comp., 18 (1964), 464–485 MR0165668 0124.33004 ISIGoogle Scholar[48] Beresford Parlett, Global convergence of the basic ${\rm QR}$ algorithm on Hessenberg matrices, Math. Comp., 22 (1968), 803–817 MR0247759 0184.37602 ISIGoogle Scholar[49] David A. Pope and , C. Tompkins, Maximizing functions of rotations. Experiments concerning speed of diagonalization of symmetric matrices using Jacobi's method, J. Assoc. Comput. Mach., 4 (1957), 459–466 MR0096355 CrossrefISIGoogle Scholar[50] H. Rutishauser, Der Quotienten-Differenzen-Algorithmus, Birkhäuser Verlag, Berlin, 1957 0077.11103 CrossrefGoogle Scholar[51] Heinz Rutishauser, Solution of eigenvalue problems with the $LR$-transformation, Nat. Bur. Standards Appl. Math. Ser., 1958 (1958), 47–81 MR0090118 0123.11303 Google Scholar[52] A. Schönhage, Zur quadratischen Konvergenz des Jacobi-Verfahrens, Numer. Math., 6 (1964), 410–412 MR0174171 0221.65066 CrossrefGoogle Scholar[53] John Todd, The condition of a certain matrix, Proc. Cambridge Philos. Soc., 46 (1950), 116–118 MR0033192 0034.37601 CrossrefISIGoogle Scholar[54] L. Tornheim, Maximum third pivot for Gaussian reduction, manuscript, California Research Corporation, Richmond, California, 1965 Google Scholar[55] A. M. Turing, Rounding-off errors in matrix processes, Quart. J. Mech. Appl. Math., 1 (1948), 287–308 MR0028100 0033.28501 CrossrefISIGoogle Scholar[56] J. M. Varah, Eigenvectors of a real matrix by inverse iteration, Tech. Rep., CS34, Computer Science Department, Stanford University, Stanford, California, 1966 Google Scholar[57] Richard S. Varga, Matrix iterative analysis, Prentice-Hall Inc., Englewood Cliffs, N.J., 1962xiii+322 MR0158502 0133.08602 Google Scholar[58] J. H. Wilkinson, Error analysis of direct methods of matrix inversion, J. Assoc. Comput. Mach., 8 (1961), 281–330 MR0176602 0109.09005 CrossrefGoogle Scholar[59] J. H. Wilkinson, Note on the quadratic convergence of the cyclic Jacobi process, Numer. Math., 4 (1962), 296–300 10.1007/BF01386321 MR0146954 0104.34501 CrossrefGoogle Scholar[60] J. H. Wilkinson, Rounding errors in algebraic processes, Prentice-Hall Inc., Englewood Cliffs, N.J., 1963vi+161 MR0161456 1041.65502 Google Scholar[61] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965xviii+662 MR0184422 0258.65037 Google Scholar[62] J. H. Wilkinson, Convergence of the ${\rm LR}$, ${\rm QR}$, and related algorithms, Comput. J., 8 (1965), 77–84 10.1093/comjnl/8.3.273 MR0183108 0135.37602 CrossrefISIGoogle Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails PARTITIONED ITERATIVE SOLVER FOR VERY LARGE THERMAL SIMULATIONSNumerical Heat Transfer, Part B: Fundamentals, Vol. 22, No. 3 | 1 Nov 1992 Cross Ref Some History of the Conjugate Gradient and Lanczos Algorithms: 1948–1976Gene H. Golub and Dianne P. O'LearySIAM Review, Vol. 31, No. 1 | 2 August 2006AbstractPDF (6558 KB)Provably monotone approximationsACM SIGNUM Newsletter, Vol. 22, No. 2 | 1 Apr 1987 Cross Ref Direct Solution and Storage of Large Sparse Linear SystemsComputational Techniques for Differentail Equations | 1 Jan 1984 Cross Ref Computational methods of linear algebraJournal of Soviet Mathematics, Vol. 15, No. 5 | 1 Jan 1981 Cross Ref Cramer's rule reconsidered or equilibration desirableACM SIGNUM Newsletter, Vol. 15, No. 4 | 1 Dec 1980 Cross Ref AN OVERVIEW OF OPTIMUM-ADAPTIVE CONTROL IN SONAR ARRAY PROCESSINGApplications of Adaptive Control | 1 Jan 1980 Cross Ref Isotropic distributions of test matricesZeitschrift für angewandte Mathematik und Physik ZAMP, Vol. 30, No. 2 | 1 Mar 1979 Cross Ref Numerical computationsACM SIGNUM Newsletter, Vol. 14, No. si-1 | 1 Feb 1979 Cross Ref Eigenvector eigenvalue theory: The diagonalization of symmetric matrices using a least-squares optimized threshold methodJournal of Computational Physics, Vol. 29, No. 2 | 1 Nov 1978 Cross Ref Progress in Numerical AnalysisBeresford ParlettSIAM Review, Vol. 20, No. 3 | 2 August 2006AbstractPDF (1939 KB)Annotated Bibliography on Generalized Inverses and ApplicationsGeneralized Inverses and Applications | 1 Jan 1976 Cross Ref An integrated sequential solver for large matrix equationsInternational Journal for Numerical Methods in Engineering, Vol. 8, No. 2 | 1 Jan 1974 Cross Ref On the solution of linear algebraic systemsUSSR Computational Mathematics and Mathematical Physics, Vol. 14, No. 3 | 1 Jan 1974 Cross Ref Solving the radial Schrödinger equation by using cubic‐spline basis functionsThe Journal of Chemical Physics, Vol. 58, No. 9 | 1 May 1973 Cross Ref Computer Implementation of the Finite-Element ProcedureNumerical and Computer Methods in Structural Mechanics | 1 Jan 1973 Cross Ref ReferencesSparse Matrices | 1 Jan 1973 Cross Ref George Forsythe and the development of computer scienceCommunications of the ACM, Vol. 15, No. 8 | 1 Aug 1972 Cross Ref Su alcune proprietà delle matrici tridiagonali e pentadiagonaliCalcolo, Vol. 8, No. 1-2 | 1 Mar 1971 Cross Ref Parametrized games and the eigenproblemLinear Algebra and its Applications, Vol. 3, No. 3 | 1 Jul 1970 Cross Ref A frontal solution program for finite element analysisInternational Journal for Numerical Methods in Engineering, Vol. 2, No. 1 | 1 Jan 1970 Cross Ref Chapter 3 Matrices and Linear Differential EquationsMethods of Nonlinear Analysis | 1 Jan 1970 Cross Ref Some results on sparse matricesMathematics of Computation, Vol. 24, No. 112 | 1 January 1970 Cross Ref Off-the-Shelf Black Boxes for ProgrammingIEEE Transactions on Education, Vol. 12, No. 1 | 1 Mar 1969 Cross Ref Numerical Analysis: Stable numerical methods for obtaining the Chebyshev solution to an overdetermined system of equationsCommunications of the ACM, Vol. 11, No. 6 | 1 Jun 1968 Cross Ref 5 Computational Aspects of the Calculus of VariationsIntroduction to the Mathematical Theory of Control Processes: Nonlinear Processes | 1 Jan 1967 Cross Ref Volume 9, Issue 3| 1967SIAM Review417-626 History Submitted:25 July 1966Published online:18 July 2006 InformationCopyright © 1967 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1009071Article page range:pp. 489-515ISSN (print):0036-1445ISSN (online):1095-7200Publisher:Society for Industrial and Applied Mathematics
Referência(s)