Solution of Dual Trigonometrical Series Using Orthogonality Relations
1970; Society for Industrial and Applied Mathematics; Volume: 18; Issue: 2 Linguagem: Inglês
10.1137/0118031
ISSN1095-712X
Autores Tópico(s)Iterative Methods for Nonlinear Equations
ResumoPrevious article Next article Solution of Dual Trigonometrical Series Using Orthogonality RelationsB. Noble and J. R. WhitemanB. Noble and J. R. Whitemanhttps://doi.org/10.1137/0118031PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] A. Erdélyi and , I. N. Sneddon, Fractional integration and dual integral equations, Canad. J. Math., 14 (1962), 685–693 MR0142997 (26:564) 0108.29201 CrossrefISIGoogle Scholar[2] Wilhelm Magnus and , Fritz Oberhettinger, Formulas and Theorems for the Special Functions of Mathematical Physics, Chelsea Publishing Company, New York, N.Y., 1949viii+172 MR0029000 (10,532b) 0039.07202 Google Scholar[3] B. Noble, Some dual series equations involving Jacobi polynomials, Proc. Cambridge Philos. Soc., 59 (1963), 363–371 MR0147685 (26:5199) 0115.28402 CrossrefISIGoogle Scholar[4] I. N. Sneddon, Dual series relations, Rep., PSR-13/1, Department of Mathematics, North Carolina State College, Raleigh, 1963 Google Scholar[5] Ian N. Sneddon, Mixed boundary value problems in potential theory, North-Holland Publishing Co., Amsterdam, 1966viii+283 MR0216018 (35:6853) 0139.28801 Google Scholar[6] R. P. Srivastav, Dual series relations. III. Dual relations involving trigonometric series, Proc. Roy. Soc. Edinburgh Sect. A, 66 (1962/1963), 173–184 (1964) MR0166544 (29:3818) 0191.36201 ISIGoogle Scholar[7] Gabor Szegö, Orthogonal Polynomials, American Mathematical Society, New York, 1939ix+401, Colloquium Publications MR0000077 (1,14b) 0023.21505 CrossrefGoogle Scholar[8] C. J. Tranter, An improved method for dual trigonometrical series, Proc. Glasgow Math. Assoc., 6 (1964), 136–140 (1964) MR0165305 (29:2594) 0131.06706 CrossrefGoogle Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails Modified Method for the Solution of Dual Trigonometric Series RelationsProceedings of the National Academy of Sciences, India Section A: Physical Sciences, Vol. 90, No. 3 | 5 April 2019 Cross Ref Approximate solution for an indentation problem using dual series equationsInternational Journal of Engineering Science, Vol. 29, No. 2 | 1 Jan 1991 Cross Ref Convergence of Solutions to the Classic Dual Cosine EquationApplied Mathematics and Computation, Vol. 9, No. 3 | 1 Oct 1981 Cross Ref Algorithm for the classic dual cosine equationApplied Mathematics and Computation, Vol. 6, No. 1 | 1 Jan 1980 Cross Ref Algorithms for classic dual trigonometric equationsComputers & Mathematics with Applications, Vol. 3, No. 3 | 1 Jan 1977 Cross Ref An algorithm for solving a dual cosine seriesComputers & Mathematics with Applications, Vol. 1, No. 2 | 1 Jun 1975 Cross Ref Least squares approximations for dual trigonometric seriesGlasgow Mathematical Journal, Vol. 14, No. 2 | 18 May 2009 Cross Ref Volume 18, Issue 2| 1970SIAM Journal on Applied Mathematics259-538 History Submitted:20 February 1969Published online:01 August 2006 InformationCopyright © 1970 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0118031Article page range:pp. 372-379ISSN (print):0036-1399ISSN (online):1095-712XPublisher:Society for Industrial and Applied Mathematics
Referência(s)