Artigo Revisado por pares

Solution of Dual Trigonometrical Series Using Orthogonality Relations

1970; Society for Industrial and Applied Mathematics; Volume: 18; Issue: 2 Linguagem: Inglês

10.1137/0118031

ISSN

1095-712X

Autores

B. Noble, J. R. Whiteman,

Tópico(s)

Iterative Methods for Nonlinear Equations

Resumo

Previous article Next article Solution of Dual Trigonometrical Series Using Orthogonality RelationsB. Noble and J. R. WhitemanB. Noble and J. R. Whitemanhttps://doi.org/10.1137/0118031PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] A. Erdélyi and , I. N. Sneddon, Fractional integration and dual integral equations, Canad. J. Math., 14 (1962), 685–693 MR0142997 (26:564) 0108.29201 CrossrefISIGoogle Scholar[2] Wilhelm Magnus and , Fritz Oberhettinger, Formulas and Theorems for the Special Functions of Mathematical Physics, Chelsea Publishing Company, New York, N.Y., 1949viii+172 MR0029000 (10,532b) 0039.07202 Google Scholar[3] B. Noble, Some dual series equations involving Jacobi polynomials, Proc. Cambridge Philos. Soc., 59 (1963), 363–371 MR0147685 (26:5199) 0115.28402 CrossrefISIGoogle Scholar[4] I. N. Sneddon, Dual series relations, Rep., PSR-13/1, Department of Mathematics, North Carolina State College, Raleigh, 1963 Google Scholar[5] Ian N. Sneddon, Mixed boundary value problems in potential theory, North-Holland Publishing Co., Amsterdam, 1966viii+283 MR0216018 (35:6853) 0139.28801 Google Scholar[6] R. P. Srivastav, Dual series relations. III. Dual relations involving trigonometric series, Proc. Roy. Soc. Edinburgh Sect. A, 66 (1962/1963), 173–184 (1964) MR0166544 (29:3818) 0191.36201 ISIGoogle Scholar[7] Gabor Szegö, Orthogonal Polynomials, American Mathematical Society, New York, 1939ix+401, Colloquium Publications MR0000077 (1,14b) 0023.21505 CrossrefGoogle Scholar[8] C. J. Tranter, An improved method for dual trigonometrical series, Proc. Glasgow Math. Assoc., 6 (1964), 136–140 (1964) MR0165305 (29:2594) 0131.06706 CrossrefGoogle Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails Modified Method for the Solution of Dual Trigonometric Series RelationsProceedings of the National Academy of Sciences, India Section A: Physical Sciences, Vol. 90, No. 3 | 5 April 2019 Cross Ref Approximate solution for an indentation problem using dual series equationsInternational Journal of Engineering Science, Vol. 29, No. 2 | 1 Jan 1991 Cross Ref Convergence of Solutions to the Classic Dual Cosine EquationApplied Mathematics and Computation, Vol. 9, No. 3 | 1 Oct 1981 Cross Ref Algorithm for the classic dual cosine equationApplied Mathematics and Computation, Vol. 6, No. 1 | 1 Jan 1980 Cross Ref Algorithms for classic dual trigonometric equationsComputers & Mathematics with Applications, Vol. 3, No. 3 | 1 Jan 1977 Cross Ref An algorithm for solving a dual cosine seriesComputers & Mathematics with Applications, Vol. 1, No. 2 | 1 Jun 1975 Cross Ref Least squares approximations for dual trigonometric seriesGlasgow Mathematical Journal, Vol. 14, No. 2 | 18 May 2009 Cross Ref Volume 18, Issue 2| 1970SIAM Journal on Applied Mathematics259-538 History Submitted:20 February 1969Published online:01 August 2006 InformationCopyright © 1970 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0118031Article page range:pp. 372-379ISSN (print):0036-1399ISSN (online):1095-712XPublisher:Society for Industrial and Applied Mathematics

Referência(s)