Artigo Revisado por pares

An Impression of Mathematics in Denmark in the Period 1600?1800

1980; Wiley; Volume: 24; Issue: 1 Linguagem: Inglês

10.1111/j.1600-0498.1980.tb00381.x

ISSN

1600-0498

Autores

Kirsti Andersen,

Tópico(s)

History of Science and Medicine

Resumo

CentaurusVolume 24, Issue 1 p. 316-334 An Impression of Mathematics in Denmark in the Period 1600–1800 Kirsti Andersen*, Kirsti Andersen* *Institut for de eksakte videnskabers historie, Ny Munkegade, DK-8000 Aarhus C, Denmark. This article is a revised and shorter version of the chapter “Matematikken i Danmark 1479–1800”, which I wrote to Københavns Universitet 1479–1979, vol. XII (to appear). Parts of the article were presented at the 23. Tagung zur Geschichte der Mathematik (January 1980) in Oberwolfach.Search for more papers by this author Kirsti Andersen*, Kirsti Andersen* *Institut for de eksakte videnskabers historie, Ny Munkegade, DK-8000 Aarhus C, Denmark. This article is a revised and shorter version of the chapter “Matematikken i Danmark 1479–1800”, which I wrote to Københavns Universitet 1479–1979, vol. XII (to appear). Parts of the article were presented at the 23. Tagung zur Geschichte der Mathematik (January 1980) in Oberwolfach.Search for more papers by this author First published: September 1980 https://doi.org/10.1111/j.1600-0498.1980.tb00381.xCitations: 4AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat BIBLIOGRAPHY & BIBLIOGRAPHICAL ABBREVIATIONS 1 Bartholin [1] Erasmus Bartholin, (ed.), Principia matheseos universalis, seu introductio ad methodum Renati Des Cartes, Amsterdam 1661 (known as volume II of Descartes' Geometria). 2 Bartholin [2] Erasmus Bartholin, De problematibus geometricis, 1664–1674. 3 Christensen [1] S. A. Christensen, Matematikkens Udvikling i Danmark og Norge i det XVIII Aarhundrede, Odense 1895. 4 Costabel [1] Pierre Costabel, (ed.), Florimond De Beaune. Doctrine de l'Angle Solide, Paris 1975. 5 Cotes [1] Roger Cotes, Harmonium mensurarum (ed. R. Smith), Cambridge 1722. 6 Gregory [1] James Gregory Tercentenary Memorial Volume (ed. H. W. Turnbull), London 1939. 7 Hallerberg [1] Arthur E. Hallerberg, “The geometry of the fixed-compass”, The Mathematics Teacher, LII (1959), pp. 230–244. 8 Hallerberg [2] Arthur E. Hallerberg, “Georg Mohr and Euclidis Curiosi”, The Mathematical Teacher, LIII (1960), pp. 127–132. 9 Hjelmslev [1] Johannes Hjelmslev, “Beiträge zur Lebensbeschreibung von Georg Mohr (1640–1697)”, Det Kgl. Danske Videnskabernes Selskab, Mathematiske-fysiske Meddelelser, XI, 4 (1931). 10 Huygens [1] Oeuvres Complètes de Christiaan Huygens, 22 vols., The Hague 18881950. 11 Juel [1] Christian Juel, “En Redegjørelse for en Afhandling af Landmaaler Caspar Wessel fra 1799”, Nyt Tidsskrift fot Matematik, afd. B, VI (1895), pp. 25–35. 12 Kraft [1] Jens Kraft, Mechanica (ed. J. N. Tetens), Bützow and Wismar 1773. 13 Kraft [2] Jens Kraft, Mechanik (ed. J. C. A. Steingrüber), Dresden 1787. 14 Kutta [1] W. M. Kutta, “Zur Geschichte der Geometrie mit Constanter Zirkelöffnung”, Nova Acta, Abh. der Kaiserl. Leop.-Carol. Deutschen Akademie der Naturforscher, LXXI (1897), pp. 71–101. 15 Leibniz [1] Leibnizens mathematische Schriften (ed. C. I. Gerhardt), Vol. I, Berlin 1849. 16 Lomholt [1] A. Lomholt, Det Kongelige Danske Videnskabernes Selskab 1742–1942. Samlinger til Selskabets Historie, IV, Copenhagen 1961. 17 Nielsen [1] Niels Nielsen, Matematiken i Danmark 1528–1800, Copenhagen 1912. 18 Pedersen [1] Kirsti Møller Pedersen, “A Note on Bartholin and the Problem of Debeaune”, Centaurus 22 (1978), pp. 99–107. 19 Stensen [1] Nicolaus Steno, Elementorum Myologiæ Specimen, Seu Musculi descriptio Geometrica, Florence 1667. 20 Stensen [2] Nicolaus Steno, Opera Philosophica, 2 vols. (ed. V. Maar), Copenhagen 1910. 21 Tobiesen [1] L. H. Tobiesen, De principiis atque historia inventionis calculi differentialis et integralis nec non methodi fluxionum, Göttingen 1793. 22 Wessel [1] Caspar Wessel, “Om Directionens analytiske Betegning”, Det Kongelige Danske Videnskabernes Selskabs Skrifter, Nye Samling, V (1799), pp. 469–518. 23 Wessel [2] Caspar Wessel, Essai sur la représentation analytique de la direction, Copenhagen 1897. NOTES 1 Here and in the following some bibliographical details have been omitted, they can all be found in Nielsen [1]. 2 Cf. Dansk Biografisk Leksikon, XIV, Copenhagen 1938, p. 447. 3 In a letter to C. Hardy Bartholin described his visits to Debeaune. The letter is printed in Bartholin [1], pp. 55–60. 4 Huygens [1], I, pp. 529–530. 5 De natura et constitutione æquationum”, in Bartholin [1], pp. 63–116, and “De limitibus æquationum”, ibid., pp. 121–152, they were also printed in the 1659 edition of Geometria.. 6 The exception is “ Doctrine de l'Angle Solide”; for its history see Costabel [1], pp. 15–17. 7 De problematibus geometricis, dissertatio sextum continuata”, Bartholin [2], pp. 57–72 contains a quadrature of the curve which solves Debeaune's second problem. Cf. Pedersen [1]. 8 Huygens [1], VIII, p. 355. 9 Sometimes Claus Kaufmann (d. 1687), known as Nicolaus Mercator, is referred to as a Dane, but I consider him to be a German. 10 Cf. Hjelmslev [1] and Hallerberg [1] and [2]. I am grateful to Torkil Heiede for having called my attention to the two last articles. 11 John Collins mentioned it in a letter he wrote to James Gregory the 4th September 1675, cf. Gregory [1], p. 327. 12 In a letter to Oldenburg dated 12th May 1676, Leibniz [1], p. 88. 13 In another letter to Gregory dated 19th October 1675 Collins mentioned that Mohr left a small treatise on the form of the roots of cubic equations and of fortification in Holland to be printed in Dutch (Gregory [1], p. 338). This treatise is still unknown. 14 Gregory [1], p. 327. 15 Cf. Hallerberg [2], p. 130. 16 Cf. Kutta [1] and Hallerberg [1]. 17 Lomholt [1], p. 44. 18 Wessel [1], p. 470: “uden at Hukommelsen bebyrdes med nye Tegn eller Regler. 19 The theorem is stated without proof in Cotes [1]; it says that if the periphery of a circle is divided into n equal arcs a1a2,…, an–1an, ana1, and if we consider a point p on the radius oa1, then 20 Christian Juel gave a summary of Wessel's paper in Juel [1], and Sophus Lie reprinted Wessel's paper in Arkiv for Matematik og Naturvidenskab, Vol. 18 (1896). Citing Literature Volume24, Issue1September 1980Pages 316-334 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX