Structural, Electronic and Optical Properties of Ru2Si3, Ru2Ge3, Os2Si3 and Os2Ge3
2002; Wiley; Volume: 231; Issue: 1 Linguagem: Inglês
10.1002/1521-3951(200205)231
ISSN1521-3951
AutoresД. Б. Мигас, Leo Miglio, В. Л. Шапошников, В. Е. Борисенко,
Tópico(s)Boron and Carbon Nanomaterials Research
Resumophysica status solidi (b)Volume 231, Issue 1 p. 171-180 Original Paper Structural, Electronic and Optical Properties of Ru2Si3, Ru2Ge3, Os2Si3 and Os2Ge3 D.B. Migas, D.B. Migas [email protected] INFM and Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 53, 20125 Milano, ItalySearch for more papers by this authorL. Miglio, L. Miglio INFM and Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 53, 20125 Milano, ItalySearch for more papers by this authorV.L. Shaposhnikov, V.L. Shaposhnikov Belorussian State University of Informatics and Radioelectonics, P. Browka 6, 220013 Minsk, BelarusSearch for more papers by this authorV.E. Borisenko, V.E. Borisenko Belorussian State University of Informatics and Radioelectonics, P. Browka 6, 220013 Minsk, BelarusSearch for more papers by this author D.B. Migas, D.B. Migas [email protected] INFM and Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 53, 20125 Milano, ItalySearch for more papers by this authorL. Miglio, L. Miglio INFM and Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 53, 20125 Milano, ItalySearch for more papers by this authorV.L. Shaposhnikov, V.L. Shaposhnikov Belorussian State University of Informatics and Radioelectonics, P. Browka 6, 220013 Minsk, BelarusSearch for more papers by this authorV.E. Borisenko, V.E. Borisenko Belorussian State University of Informatics and Radioelectonics, P. Browka 6, 220013 Minsk, BelarusSearch for more papers by this author First published: 27 March 2002 https://doi.org/10.1002/1521-3951(200205)231:1 3.0.CO;2-0Citations: 35AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract We have performed a comparative study of structural, electronic and optical properties of Ru2Si3, Ru2Ge3, Os2Si3 and Os2Ge3 by means of ultrasoft pseudopotential and full-potential linearized augmented plane wave methods. The estimated difference in the cohesion energy between the low-temperature orthorhombic phase and the high temperature tetragonal one for all these compounds indicates that the former phase is lower in energy with respect to the latter one. All materials in the orthorhombic structure are found to be direct band-gap semiconductors, still some of them in the tetragonal structure display an indirect nature (Os2Si3) or a competitive direct–indirect character (Ru2Ge3) of the gap. Optical properties are discussed by analyzing the imaginary part of the dielectric function and the dipole matrix elements corresponding to different interband transitions indicating for osmium silicide and germanide the presence of low-energy transitions with an appreciable value of the oscillator strength. References [1] V.E. Borisenko (Ed.), Semiconducting Silicides, Springer, Berlin 2000. L. Miglio and F. d'Heurle (Eds.), Silicides: Fundamentals and Applications, World Scientific, Singapore 2000. [2] D.N. Leong, M.A. Harry, K.J. Reeson, and K.P. Homewood, Nature 387, 686 (1997). T. Suemasu, Y. Negishi, K. Takakura, and F. Hasegawa, Jpn. J. Appl. Phys. 39, L1013 (2000). [3] C. Spinella, S. Coffa, C. Bongiorno, S. Pannitteri, and M.G. Grimaldi, Appl. Phys. Lett. 76, 173 (2000). M.G. Grimaldi, C. Spinella, E. Grilli, L. Martinelli, D.B. Migas, M. Gemelli, L. Miglio, M. Fanciulli, F. Marabelli, C. Soci, and M. Gredo, to be published. [4] C.B. Vining, in: Thermoelectrics, Ed. D. M. Rowe, CRC Press, New York 1994 (p. 277). [5] W. Wolf, G. Bihlmayer, and S. Blügel, Phys. Rev. B 55, 6918 (1997). [6] D.J. Poutcharovsky and E. Parte, Acta Cryst. B 30, 2692 (1974). [7] D.J. Poutcharovsky, K. Yvon, and E. Parte, J. Less-Common Met. 40, 139 (1975). [8] L. Schellenberg, H.F. Braun, and J. Müller, J. Less-Common Met. 144, 341 (1988). [9] I.J. Ohshugi, T. Kojima, C.B. Vining, M. Sakata, and I.A. Nishida, Proc. 17th Internat. Conf. Thermoelectrics, Proc. IEEE 5, 370 (1998). [10] F. Weitzer, P. Rogl, and J.C. Schuster, Z. Met.kd. 79, 154 (1988). [11] D. Lenssen, D. Guggi, H.L. Bay, and S. Mantl, Thin Solid Films 368, 15 (2000). D. Lenssen, S. Lenk, H.L. Bay, and S. Mantl, Thin Solid Films 371, 66 (2000). [12] G. Shao, S. Ledain, Y.L. Chen, J.S. Sharpe, R.M. Gwilliam, K.P. Homewood, K.R. Kirkby, and M.J. Goringe, Appl. Phys. Lett. 76, 2529 (2000). [13] W. Henrion, M. Rebien, A.G. Birdwell, V.N. Antonov, and O. Jepsen, Thin Solid Films 364, 171 (2000). [14] J.S. Sharpe, Y.L. Chen, R.M. Gwilliam, A.K. Kewell, C.N. McKinty, M.A. Lorenco, G. Shao, K.P. Homewood, and K.R. Kirkby, Appl. Phys. Lett. 75, 1282 (1999). [15] C.P. Susz, J. Müller, K. Yvon, and E. Parte, J. Less-Common Met. 71, 139 (1980). [16] D. Lenssen, H.L. Bay, St. Mesters, C. Dieker, D. Guggi, R. Carius, and S. Mantl, J. Lumin. 80, 461 (1999). [17] C.B. Vining and C.E. Allevato, Proc. 10th Internat. Conf. Thermoelectrics, Babrow Press, Cardiff 1991 (p. 167). T. Ohta, C. B. Vining, and C. E. Allevato, Proc. 26th Intersoc. Energy Conversion Engineering Conf., Vol. 3, American Nuclear Society, La Grange Park (IL), 1991 (p. 196). [18] A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, N.N. Dorozhkin, V.E. Borisenko, A. Heinrich, and H. Lange, Phys. Rev. B 60, 16494 (1999). [19] A. Borshchevsky and J.-P. Fleurial, J. Cryst. Growth 137, 283 (1994). [20] G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994). G. Kresse, and J. Futhmüller, Comput. Mater. Sci. 6, 15 (1996). G. Kresse and J. Futhmüller, Phys. Rev. B 54, 11169 (1996). [21] D.M. Ceperly and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980). [22] J. Perdew and A. Zunger, Phys. Rev B 23, 5048 (1981). [23] J. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). [24] P. Blöchl, O. Jepsen, and O.K. Andersen, Phys. Rev. B 49, 16223 (1994). [25] M. Östing and C. Zaring in: Properties of Metal Silicides, K. Maex and M. Van Rossum) (Eds.), INSPEC, London 1990 (p. 37). [26] P. Blaha, K. Schwarz, and J. Luitz, WIEN97, Vienna University of Technology 1997. (Improved and Updated Unix Version of the Original Copyrighted WIEN-Code, which was published by P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. 59, 399, 1990). [27] E.G. Moroni, W. Wolf, J. Hafner, and R. Podloucky, Phys. Rev. B 59, 12860 (1999). Citing Literature Volume231, Issue1May 2002Pages 171-180 ReferencesRelatedInformation
Referência(s)