Carta Revisado por pares

Testing hypotheses without considering predictions

2007; Wiley; Volume: 29; Issue: 5 Linguagem: Inglês

10.1002/bies.20566

ISSN

1521-1878

Autores

Tal Dagan, William Martin,

Tópico(s)

Microbial Metabolic Engineering and Bioproduction

Resumo

BioEssaysVolume 29, Issue 5 p. 500-503 Correspondence Testing hypotheses without considering predictions Tal Dagan, Tal Dagan Institute of Botany, University of Düsseldorf, 40225 Düsseldorf, GermanySearch for more papers by this authorWilliam Martin, William Martin [email protected] Institute of Botany, University of Düsseldorf, 40225 Düsseldorf, GermanySearch for more papers by this author Tal Dagan, Tal Dagan Institute of Botany, University of Düsseldorf, 40225 Düsseldorf, GermanySearch for more papers by this authorWilliam Martin, William Martin [email protected] Institute of Botany, University of Düsseldorf, 40225 Düsseldorf, GermanySearch for more papers by this author First published: 20 April 2007 https://doi.org/10.1002/bies.20566Citations: 13AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References 1 Poole AM, Penny D. 2007. Evaluating hypotheses for the origin of eukaryotes. BioEssays 29: 74– 84. 2 de Duve C. 1969. Evolution of the peroxisome. Annals NY Acad Sci 168: 369– 381. 3 Stanier Y. 1970. Some aspects of the biology of cells and their possible evolutionary significance. Symp Soc Gen Microbiol 20: 1– 38. 4 Cavalier-Smith T. 1975. The origin of nuclei and of eukaryotic cells. Nature 256: 463– 468. 5 Allen JF. 2001. Bioinformatics and discovery: Induction beckons again. BioEssays 23: 104– 107. 6 Embley TM, Martin W. 2006. Eukaryotic evolution, changes and challenges. Nature 440: 623– 630. 7 van der Giezen M, Tovar J, Clark CG. 2005. Mitochondrion-derived organelles in protists and fungi. Int Rev Cytol 244: 175– 225. 8 Doolittle WF. 1999. Phylogenetic classification and the universal tree. Science 284: 2124– 2128. 9 Eisen J. 2000. Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr Opin Genet Dev 10: 606– 611. 10 Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299– 304. 11 Koonin EV, Makarova KS, Aravind L. 2001. Horizontal gene transfer in prokaryotes: Quantification and classification. Annu Rev Microbiol 55: 709– 742. 12 Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brussow H. 2003. Phage as agents of lateral gene transfer. Curr Opin Microbiol 6: 417– 424. 13 Doolittle WF, Bapteste E. 2007. Pattern pluralism and the tree of life hypothesis. Proc Natl Acad Sci USA (In press). 14 Perna NT, Plunkett G, Burland V, Mau B, Glasner JD, et al. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529– 533. 15 Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, et al. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99: 17020– 17024. 16 Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, et al. 2002. The genome of Methanosarcina mazei: Evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4: 453– 461. 17 Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, et al. 1999. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399: 323– 329. 18 Doolittle WF, Boucher Y, Nesbo CL, Douady CJ, Andersson JO, et al. 2003. How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos Trans R Soc Lond B 358: 39– 57. 19 Dagan T, Martin W. 2007. Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci USA 104: 870– 875. 20 Penny D, McComish BJ, Charleston MA, Hendy MD. 2001. Mathematical elegance with biochemical realism: The covarion model of molecular evolution. J Mol Evol 53: 711– 723. 21 Cavalier-Smith T. 2002. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52: 297– 354. 22 Zientz E, Dandekar T, Gross R. 2004. Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev 68: 745– 770. 23 Wu M, Sun L, Vamathevan J, Riegler M, Deboy R, et al. 2004. The genome sequence and evolution of the reproductive parasite Wolbachia pipientis w Mel: A streamlined α-Proteobacterium massively infected with mobile genetic elements. PLoS Biology 2: 327– 341. 24 Embley TM, Finlay BJ. 1993. Systematic and morphological diversity of endosymbiotic methanogens in anaerobic ciliates. Antonie Van Leeuwenhoek 64: 261– 271. 25 Fenchel T, Bernard C. 1993. A purple protist. Nature 362: 300. 26 Duplessis MR, Ziebis W, Gros O, Caro A, Robidart J, et al. 2004. Respiration strategies utilized by the gill endosymbiont from the host lucinid Codakia orbicularis (Bivalvia: Lucinidae). Appl Environ Microbiol 70: 4144– 4150. 27 Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, et al. 2006. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443: 950– 955. 28 Schmid AMM. 2003. Endobacteria in the diatom Pinnularia (Bacillariophyceae). I. “Scattered ct-nucleoids” explained: DAPI-DNA complexes stem from exoplastidial bacteria boring into the chloroplasts. J Phycol 39: 122– 138. 29 Thacker RW. 2005. Impacts of shading on sponge-Cyanobacteria symbioses: A comparison between host-specific and generalist associations. Integr Comp Biol 45: 369– 376. 30 Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, et al. 2006. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314: 267. 31 Buchner P. 1953. Endosymbiose der Tiere mit pflanzlichen Mikroorganismen. Birkhäuser, Basel. 771 pp. 32 Yoon HS, Reyes-Prieto A, Melkonian M, Bhattacharya D. 2006. Minimal plastid evolution in the Paulinella endosymbiont. Curr Biol 16: R670– R672. 33 Cavalier-Smith T, Lee JJ. 1985. Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J Protozool 32: 376– 379. 34 Theissen U, Martin W. 2006. The difference between endosymbionts and organelles. Curr Biol 16: R1016– R1017. 35 von Dohlen CD, Kohler S, Alsop ST, McManus WR. 2001. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412: 433– 436. 36 Wujek DE. 1979. Intracellular bacteria in the blue-green-alga Pleurocapsa minor . Trans Am Micros Soc 98: 143– 145. 37 Dolezal P, Likic V, Tachezy J, Lithgow T. 2006. Evolution of the molecular machines for protein import into mitochondria. Science 313: 314– 318. 38 Martin W, Müller M. 1998. The hydrogen hypothesis for the first eukaryote. Nature 392: 37– 41. 39 Dagan T, Martin W. 2006. The tree of one percent. Genome Biol 7: 118 [7 pages]. 40 Martin W, Koonin EV. 2006. Introns and the origin of nucleus-cytosol compartmentation. Nature 440: 41– 45. Citing Literature Volume29, Issue5May 2007Pages 500-503 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX