Revisão Revisado por pares

On the Rate of Oxygen Consumption by Tissues and Lower Organisms as a Function of Oxygen Tension

1933; University of Chicago Press; Volume: 8; Issue: 3 Linguagem: Inglês

10.1086/394439

ISSN

1539-7718

Autores

Pei‐Sung Tang,

Tópico(s)

Cancer, Hypoxia, and Metabolism

Resumo

Previous articleNext article On the Rate of Oxygen Consumption by Tissues and Lower Organisms as a Function of Oxygen TensionPei-Sung TangPei-Sung TangPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by The Quarterly Review of Biology Volume 8, Number 3Sep., 1933 Published in association with Stony Brook University Article DOIhttps://doi.org/10.1086/394439 Views: 7Total views on this site Citations: 98Citations are reported from Crossref PDF download Crossref reports the following articles citing this article:Mahmood Borzouei, Mohammad Mardaani, Modjtaba Emadi-Baygi, Hassan Rabani Development of a coupled modeling for tumor growth, angiogenesis, oxygen delivery, and phenotypic heterogeneity, Biomechanics and Modeling in Mechanobiology 22, no.33 (Mar 2023): 1067–1081.https://doi.org/10.1007/s10237-023-01701-wNirmalendu Saha, Debaprasad Koner, Ritu Sharma Environmental hypoxia: A threat to the gonadal development and reproduction in bony fishes, Aquaculture and Fisheries 7, no.55 (Sep 2022): 572–582.https://doi.org/10.1016/j.aaf.2022.02.002Filippo Schiavo, Emely Kjellsson Lindblom, Iuliana Toma-Dasu Towards the virtual tumor for optimizing radiotherapy treatments of hypoxic tumors: A novel model of heterogeneous tissue vasculature and oxygenation, Journal of Theoretical Biology 547 (Aug 2022): 111175.https://doi.org/10.1016/j.jtbi.2022.111175Yangfan Zhang, Daniel W. Montgomery, Connor F. White, Jeffrey G. Richards, Colin J. Brauner, Anthony P. Farrell Characterizing the hypoxic performance of a fish using a new metric: P AAS-50, Journal of Experimental Biology 225, no.1111 (Jun 2022).https://doi.org/10.1242/jeb.244239Jacobo Ayensa-Jiménez, Mohamed H. Doweidar, Jose A. Sanz-Herrera, Manuel Doblare, Inna Lavrik Understanding glioblastoma invasion using physically-guided neural networks with internal variables, PLOS Computational Biology 18, no.44 (Apr 2022): e1010019.https://doi.org/10.1371/journal.pcbi.1010019Alexander G. Little, Frank Seebacher Physiological Performance Curves: When Are They Useful?, Frontiers in Physiology 12 (Dec 2021).https://doi.org/10.3389/fphys.2021.805102Anthony P. Farrell, Casey A. Mueller, Roger S. Seymour Coming up for air, Journal of Experimental Biology 224, no.1717 (Sep 2021).https://doi.org/10.1242/jeb.243101Joseph Ackermann, Martine Ben Amar, Jean-François Joanny Multi-cellular aggregates, a model for living matter, Physics Reports 927 (Sep 2021): 1–29.https://doi.org/10.1016/j.physrep.2021.05.001Brad A. Seibel, Alyssa Andres, Matthew A. Birk, Alexandra L. Burns, C. Tracy Shaw, Alexander W. Timpe, Christina J. Welsh Oxygen supply capacity breathes new life into critical oxygen partial pressure ( P crit), Journal of Experimental Biology 224, no.88 (Apr 2021).https://doi.org/10.1242/jeb.242210Georgina A. Rivera-Ingraham, Madalena Andrade, Regis Vigouroux, Montserrat Solé, Katherina Brokordt, Jehan-Hervé Lignot, Rosa Freitas Are we neglecting earth while conquering space? Effects of aluminized solid rocket fuel combustion on the physiology of a tropical freshwater invertebrate, Chemosphere 268 (Apr 2021): 128820.https://doi.org/10.1016/j.chemosphere.2020.128820B C Rothwell, N F Kirkby, M J Merchant, A L Chadwick, M Lowe, R I Mackay, J H Hendry, K J Kirkby Determining the parameter space for effective oxygen depletion for FLASH radiation therapy, Physics in Medicine & Biology 66, no.55 (Feb 2021): 055020.https://doi.org/10.1088/1361-6560/abe2eaJacobo Ayensa-Jiménez, Marina Pérez-Aliacar, Teodora Randelovic, Sara Oliván, Luis Fernández, José Antonio Sanz-Herrera, Ignacio Ochoa, Mohamed H. Doweidar, Manuel Doblaré Mathematical formulation and parametric analysis of in vitro cell models in microfluidic devices: application to different stages of glioblastoma evolution, Scientific Reports 10, no.11 (Dec 2020).https://doi.org/10.1038/s41598-020-78215-3Jessica E. Reemeyer, Bernard B. Rees Standardizing the determination and interpretation of P crit in fishes, Journal of Experimental Biology 222, no.1818 (Sep 2019).https://doi.org/10.1242/jeb.210633Katherina Brokordt, Yohana Defranchi, Ignacio Espósito, Claudia Cárcamo, Paulina Schmitt, Luis Mercado, Erwin de la Fuente-Ortega, Georgina A. Rivera-Ingraham Reproduction Immunity Trade-Off in a Mollusk: Hemocyte Energy Metabolism Underlies Cellular and Molecular Immune Responses, Frontiers in Physiology 10 (Feb 2019).https://doi.org/10.3389/fphys.2019.00077Jacobo Ayensa-Jiménez, Mohamed H. Doweidar, Teodora Randelovic, Luis. J. Fernández, Sara Oliván, Ignacio Ochoa, Manuel Doblaré On the Simulation of Organ-on-Chip Cell Processes, (Jan 2019): 313–341.https://doi.org/10.1016/B978-0-12-816390-0.00016-9Morten Bo Søndergaard Svendsen, Jacob L. Johansen, Peter G. Bushnell, Peter V. Skov, Tommy Norin, Paolo Domenici, John F. Steffensen, Augusto Abe Are all bony fishes oxygen regulators? Evidence for oxygen regulation in a putative oxygen conformer, the swamp eel Synbranchus marmoratus, Journal of Fish Biology 94, no.11 (Jan 2019): 178–182.https://doi.org/10.1111/jfb.13861Gary A. Cobbs, James E. Alexander, Aamir Ahmad Assessment of oxygen consumption in response to progressive hypoxia, PLOS ONE 13, no.1212 (Dec 2018): e0208836.https://doi.org/10.1371/journal.pone.0208836Chris M. Wood The fallacy of the Pcrit – are there more useful alternatives?, The Journal of Experimental Biology 221, no.2222 (Nov 2018): jeb163717.https://doi.org/10.1242/jeb.163717Morten Svendsen, Nikolaj Andersen, Per Hansen, John Steffensen Effects of Harmful Algal Blooms on Fish: Insights from Prymnesium parvum, Fishes 3, no.11 (Feb 2018): 11.https://doi.org/10.3390/fishes3010011Georgina A. Rivera-Ingraham, Aude Nommick, Eva Blondeau-Bidet, Peter Ladurner, Jehan-Hervé Lignot Salinity stress from the perspective of the energy-redox axis: Lessons from a marine intertidal flatworm, Redox Biology 10 (Dec 2016): 53–64.https://doi.org/10.1016/j.redox.2016.09.012M. B. S. Svendsen, P. G. Bushnell, J. F. Steffensen Design and setup of intermittent‐flow respirometry system for aquatic organisms, Journal of Fish Biology 88, no.11 (Nov 2015): 26–50.https://doi.org/10.1111/jfb.12797S. Snyder, L. E. Nadler, J. S. Bayley, M. B. S. Svendsen, J. L. Johansen, P. Domenici, J. F. Steffensen Effect of closed v . intermittent‐flow respirometry on hypoxia tolerance in the shiner perch Cymatogaster aggregata, Journal of Fish Biology 88, no.11 (Jan 2016): 252–264.https://doi.org/10.1111/jfb.12837S. Lefevre, S.-A. Watson, P. L. Munday, G. E. Nilsson Will jumping snails prevail? Influence of near-future CO2, temperature and hypoxia on respiratory performance in the tropical conch Gibberulus gibberulus gibbosus, Journal of Experimental Biology 218, no.1919 (Oct 2015): 2991–3001.https://doi.org/10.1242/jeb.120717Jakob H. Lagerlöf, Jon Kindblom, Peter Bernhardt The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity, Medical Physics 41, no.44 (Mar 2014).https://doi.org/10.1118/1.4866887G. A. Rivera-Ingraham, U. Bickmeyer, D. Abele The physiological response of the marine platyhelminth Macrostomum lignano to different environmental oxygen concentrations, Journal of Experimental Biology 216, no.1414 (Mar 2013): 2741–2751.https://doi.org/10.1242/jeb.081984Ignacio Espinoza, Peter Peschke, Christian P. Karger A model to simulate the oxygen distribution in hypoxic tumors for different vascular architectures, Medical Physics 40, no.88 (Nov 2016): 081703.https://doi.org/10.1118/1.4812431Nicholas Carey, Alexander Galkin, Patrik Henriksson, Jeffrey G. Richards, Julia D. Sigwart Variation in oxygen consumption among 'living fossils' (Mollusca: Polyplacophora), Journal of the Marine Biological Association of the United Kingdom 93, no.11 (Oct 2012): 197–207.https://doi.org/10.1017/S0025315412000653Iuliana Toma-Dasu, Alexandru Dasu Modelling Tumour Oxygenation, Reoxygenation and Implications on Treatment Outcome, Computational and Mathematical Methods in Medicine 2013 (Jan 2013): 1–9.https://doi.org/10.1155/2013/141087Casey A. Mueller and Roger S. Seymour The Regulation Index: A New Method for Assessing the Relationship between Oxygen Consumption and Environmental Oxygen, Physiological and Biochemical Zoology 84, no.55 (Jul 2015): 522–532.https://doi.org/10.1086/661953S. Clusella-Trullas, S. L. Chown Investigating onychophoran gas exchange and water balance as a means to inform current controversies in arthropod physiology, Journal of Experimental Biology 211, no.1919 (Sep 2008): 3139–3146.https://doi.org/10.1242/jeb.021907Alexandru Daşu, Iuliana Toma-Daşu Vascular oxygen content and the tissue oxygenation-A theoretical analysis, Medical Physics 35, no.22 (Nov 2016): 539–545.https://doi.org/10.1118/1.2830382James E Alexander Jr, Robert F McMahon Respiratory response to temperature and hypoxia in the zebra mussel Dreissena polymorpha, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 137, no.22 (Feb 2004): 425–434.https://doi.org/10.1016/j.cbpb.2003.11.003Alexandru Da u, Iuliana Toma-Da u, Mikael Karlsson Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia, Physics in Medicine and Biology 48, no.1717 (Aug 2003): 2829–2842.https://doi.org/10.1088/0031-9155/48/17/307 Dennis C. Haney and Frank G. Nordlie Influence of Environmental Salinity on Routine Metabolic Rate and Critical Oxygen Tension of Cyprinodon variegatus D. C. Haney & F. G. Nordlie, Physiological Zoology 70, no.55 (Sep 2015): 511–518.https://doi.org/10.1086/515867Brent D. Foy, Avi Rotem, Mehmet Toner, Ronald G. Tompkins, Martin L. Yarmush A Device to Measure the Oxygen Uptake Rate of Attached Cells: Importance in Bioartificial Organ Design, Cell Transplantation 3, no.66 (Jun 2017): 515–527.https://doi.org/10.1177/096368979400300609Brent D. Foy, Jaegwan Lee, Jeff Morgan, Mehmet Toner, Ronald G. Tompkins, Martin L. Yarmush Optimization of hepatocyte attachment to microcarriers: Importance of oxygen, Biotechnology and Bioengineering 42, no.55 (Feb 2004): 579–588.https://doi.org/10.1002/bit.260420505Maria José, A. Hebling, Carlos H.S. Penteado, Erasmo G. Mendes Respiratory regulation in workers of the leaf cutting ant Atta sexdens rubropilosa Forel, 1908, Comparative Biochemistry and Physiology Part A: Physiology 101, no.22 (Jan 1992): 319–322.https://doi.org/10.1016/0300-9629(92)90539-3B.C. Clarke, C.L. Griffiths Ecological energetics of mussels Choromytilus meridionalis under simulated intertidal rock pool conditions, Journal of Experimental Marine Biology and Ecology 137, no.11 (May 1990): 63–77.https://doi.org/10.1016/0022-0981(90)90060-PDavid J. Marshall, Christopher D. McQuaid The influence of respiratory responses on the tolerance to sand inundation of the limpets Patella granularis L. (Prosobranchia) and Siphonaria capensis Q. et G. (Pulmonata), Journal of Experimental Marine Biology and Ecology 128, no.33 (Jun 1989): 191–201.https://doi.org/10.1016/0022-0981(89)90027-0A. C. Taylor, J. I. Spicer Interspecific comparison of the respiratory response to declining oxygen tension and the oxygen transporting properties of the blood of some palaemonid prawns (Crustacea: Palaemonidae), Marine Behaviour and Physiology 14, no.22 (Jan 1989): 81–91.https://doi.org/10.1080/10236248909378695 Martin A. Kapper , and William B. Stickle Metabolic Responses of the Estuarine Gastropod Thais haemastoma to Hypoxia, Physiological Zoology 60, no.11 (Sep 2015): 159–173.https://doi.org/10.1086/physzool.60.1.30158637Erasmo G Mendes, Gilda B Ulian The influence of size, temperature and oxygen tension upon the respiratory metabolism of the terrestrial amphipod Talitrus (Talitroides) pacificus Hurley, 1955, Comparative Biochemistry and Physiology Part A: Physiology 86, no.11 (Jan 1987): 155–162.https://doi.org/10.1016/0300-9629(87)90294-5Carlos Henrique Silva Penteado Respiratory responses of the tropical millipede Plusioporus setiger (Broelemann, 1902) (Spirostreptida: Spirostreptidae) to normoxic and hypoxic conditions, Comparative Biochemistry and Physiology Part A: Physiology 86, no.11 (Jan 1987): 163–168.https://doi.org/10.1016/0300-9629(87)90295-7Cristina A.Z Santos, Carlos H.S Penteado, Erasmo G Mendes The respiratory responses of an amphibious snail Pomacea lineata (spix, 1827), to temperature and oxygen tension variations, Comparative Biochemistry and Physiology Part A: Physiology 86, no.33 (Jan 1987): 409–415.https://doi.org/10.1016/0300-9629(87)90516-0A.J.S Hawkins, N.R Menon, R Damodaran, B.L Bayne Metabolic responses of the mussels Perna viridis and Perna indica to declining oxygen tension at different salinities, Comparative Biochemistry and Physiology Part A: Physiology 88, no.44 (Jan 1987): 691–694.https://doi.org/10.1016/0300-9629(87)90684-0G. Gaty, J.H. Wilson Effect of body size, starvation, temperature and oxygen tension on the oxygen consumption of hatchery-reared ormers Haliotis tuberculata L., Aquaculture 56, no.3-43-4 (Oct 1986): 229–237.https://doi.org/10.1016/0044-8486(86)90338-8Rachel P. Wynberg, A.C. Brown Oxygen consumption of the sandy-beach whelk Bullia digitalis (Dillwyn) at reduced oxygen tensions, Comparative Biochemistry and Physiology Part A: Physiology 85, no.11 (Jan 1986): 45–47.https://doi.org/10.1016/0300-9629(86)90459-7S. Morris, A.C. Taylor The respiratory response of the intertidal prawn Palaemon elegans (Rathke) to hypoxia and hyperoxia, Comparative Biochemistry and Physiology Part A: Physiology 81, no.33 (Jan 1985): 633–639.https://doi.org/10.1016/0300-9629(85)91039-4A.R. Brand, D.J. Morris The respiratory responses of the dog cockle Glycymerisglycymeris (L.) to declining environmental oxygen tension, Journal of Experimental Marine Biology and Ecology 83, no.11 (Dec 1984): 89–106.https://doi.org/10.1016/0022-0981(84)90119-9E.M. Tytler, P.Spencer Davies Photosynthetic production and respiratory energy expenditure in the anemone Anemonia sulcata (Pennant), Journal of Experimental Marine Biology and Ecology 81, no.11 (Oct 1984): 73–86.https://doi.org/10.1016/0022-0981(84)90224-7Anneliese Margarete Wernick, Carlos Henrique Silva Penteado Oxygen consumption by the hermit crab, Clibanarius vittatus (Bosc, 1802) in declining oxygen tensions, Comparative Biochemistry and Physiology Part A: Physiology 74, no.33 (Jan 1983): 749–753.https://doi.org/10.1016/0300-9629(83)90579-0B.L. BAYNE, R.C. NEWELL Physiological Energetics of Marine Molluscs, (Jan 1983): 407–515.https://doi.org/10.1016/B978-0-12-751404-8.50017-7Pei‐sung Tang REGULATION AND CONTROL OF MULTIPLE PATHWAYS OF RESPIRATORY METABOLISM IN RELATION TO OTHER PHYSIOLOGICAL FUNCTIONS IN HIGHER PLANTS: RECOLLECTIONS AND REFLECTIONS ON 50 YEARS OF RESEARCH IN PLANT RESPIRATION, American Journal of Botany 68, no.33 (Mar 1981): 443–448.https://doi.org/10.1002/j.1537-2197.1981.tb06383.xRobin C. Murdoch, Sandra E. Shumway Oxygen consumption in six species of chitons in relation to their position on the shore, Ophelia 19, no.22 (Feb 2012): 127–144.https://doi.org/10.1080/00785326.1980.10425511Joan Mackay, Sandra E. Shumway Factors affecting oxygen consumption in the scallop Chlamys delicatula (Hutton), Ophelia 19, no.11 (May 1980): 19–26.https://doi.org/10.1080/00785326.1980.10425503Augusto S Abe, Erasmo G Mendes The effect of inspired oxygen tension on oxygen uptake and tolerance to anoxia in the water snakes Helicops modestus and Liophis miliaris (Colubridae), Comparative Biochemistry and Physiology Part A: Physiology 65, no.44 (Jan 1980): 459–463.https://doi.org/10.1016/0300-9629(80)90059-6P Famme, L.H Kofoed The ventilatory current and ctenidial function related to oxygen uptake in declining oxygen tension by the mussel Mytilus edulis L., Comparative Biochemistry and Physiology Part A: Physiology 66, no.22 (Jan 1980): 161–171.https://doi.org/10.1016/0300-9629(80)90147-4Per Famme Oxygen-dependence of the respiration by the mussel Mytilus edulis L. as function of size, Comparative Biochemistry and Physiology Part A: Physiology 67, no.11 (Jan 1980): 171–174.https://doi.org/10.1016/0300-9629(80)90424-7Sandra E. Shumway, Arthur Youngson The effects of fluctuating salinity on the physiology of Modiolus demissus (Dillwyn), Journal of Experimental Marine Biology and Ecology 40, no.22 (Sep 1979): 167–181.https://doi.org/10.1016/0022-0981(79)90043-1Sandra E Shumway The effects of body size, oxygen tension and mode of life on the oxygen uptake rates of polychaetes, Comparative Biochemistry and Physiology Part A: Physiology 64, no.22 (Jan 1979): 273–278.https://doi.org/10.1016/0300-9629(79)90660-1R.C Newell, L.G Johnson, L.H Kofoed Effects of environmental temperature and hypoxia on the oxygen consumption of the suspension-feeding gastropod Crepidula fornicata L., Comparative Biochemistry and Physiology Part A: Physiology 59, no.22 (Jan 1978): 175–182.https://doi.org/10.1016/0300-9629(78)90202-5Ronald V. Dimock Effects of evisceration on oxygen consumption by Stichopus parvimensis Clark (Echinodermata: Holothuroidea), Journal of Experimental Marine Biology and Ecology 28, no.22 (Jul 1977): 125–132.https://doi.org/10.1016/0022-0981(77)90111-3Jana Waite, Gaylen Neufeld Oxygen consumption by Sphaerium simile, Comparative Biochemistry and Physiology Part A: Physiology 57, no.33 (Jan 1977): 373–375.https://doi.org/10.1016/0300-9629(77)90209-2B. L. Bayne, C. J. Bayne, T. C. Carefoot, R. J. Thompson The physiological ecology of Mytilus californianus Conrad, Oecologia 22, no.33 (Jan 1976): 229–250.https://doi.org/10.1007/BF00344794J. M. Shick Physiological and behavioral responses to hypoxia and hydrogen sulfide in the infaunal asteroid Ctenodiscus crispatus, Marine Biology 37, no.33 (Jan 1976): 279–289.https://doi.org/10.1007/BF00387613A.C. Taylor, A.R. Brand Effects of hypoxia and body size on the oxygen consumption of the bivalve Arctica islandica (L.), Journal of Experimental Marine Biology and Ecology 19, no.22 (Sep 1975): 187–196.https://doi.org/10.1016/0022-0981(75)90046-5Webster van Winkle, Charlotte Mangum Oxyconformers and oxyregulators: A quantitative index, Journal of Experimental Marine Biology and Ecology 17, no.22 (Mar 1975): 103–110.https://doi.org/10.1016/0022-0981(75)90025-8P.R.B. Caldwell, B.A. Wittenberg The oxygen dependency of mammalian tissues, The American Journal of Medicine 57, no.33 (Sep 1974): 447–452.https://doi.org/10.1016/0002-9343(74)90138-7A.R. Brand, D. Roberts The cardiac responses of the scallop Pecten maximus (L.) to respiratory stress, Journal of Experimental Marine Biology and Ecology 13, no.11 (Oct 1973): 29–43.https://doi.org/10.1016/0022-0981(73)90044-0B Bayne The responses of three species of bivalve mollusc to declining oxygen tension at reduced salinity, Comparative Biochemistry and Physiology Part A: Physiology 45, no.33 (Jul 1973): 793–806.https://doi.org/10.1016/0300-9629(73)90082-0D. E. F. Harrison, A. H. Stouthamer Growth, Oxygen, and Respiration, CRC Critical Reviews in Microbiology 2, no.22 (Sep 2008): 185–228.https://doi.org/10.3109/10408417309108385B.L. Bayne Oxygen consumption by three species of lamellibranch mollusc in declining ambient oxygen tension, Comparative Biochemistry and Physiology Part A: Physiology 40, no.44 (Dec 1971): 955–970.https://doi.org/10.1016/0300-9629(71)90284-2F.E.J. FRY The Effect of Environmental Factors on the Physiology of Fish, (Jan 1971): 1–98.https://doi.org/10.1016/S1546-5098(08)60146-6W. A. Grunewald, W. Sowa Capillary structures and O2 supply to tissue, (): 149–209.https://doi.org/10.1007/BFb0050159W. Grunewald Digitale Simulation eines r�umlichen Diffusionsmodelles der O2-Versorgung biologischer Gewebe, Pfl�gers Archiv European Journal of Physiology 309, no.33 (Jan 1969): 266–284.https://doi.org/10.1007/BF00586803H.W. Doelle CHEMOSYNTHESIS—AEROBIC RESPIRATION, (Jan 1969): 199–255.https://doi.org/10.1016/B978-1-4832-3135-8.50008-4D. G. V. Prasada Rao, P. N. Ganapati Respiration as a function of oxygen concentration in intertidal barnacles, Marine Biology 1, no.44 (Jun 1968): 309–310.https://doi.org/10.1007/BF00360781 B. L. Bayne The Respiratory Response of Mytilus perna L. (Mollusca: Lamellibranchia) to Reduced Environmental Oxygen, Physiological Zoology 40, no.33 (Sep 2015): 307–313.https://doi.org/10.1086/physzool.40.3.30152867J. Christophersen, C. P. Whittingham, A. Quispel, Walter Stiles Atmung und Entwicklung, (Jan 1960): 1537–1713.https://doi.org/10.1007/978-3-642-94800-8_9H.P. WOLVEKAMP, TALBOT H. WATERMAN RESPIRATION, (Jan 1960): 35–100.https://doi.org/10.1016/B978-0-12-395628-6.50008-7F.E.J. FRY THE AQUATIC RESPIRATION OF FISH, (Jan 1957): 1–63.https://doi.org/10.1016/B978-1-4832-2817-4.50006-8M. Tschapek, N. Giambiagi Nitrogen fixation of Azotobacter in soil ?Its inhibition by oxygen, Archiv f�r Mikrobiologie 21, no.44 (Jan 1955): 376–390.https://doi.org/10.1007/BF00413000R. K. Finn AGITATION-AERATION IN THE LABORATORY AND IN INDUSTRY, Bacteriological Reviews 18, no.44 (Dec 1954): 254–274.https://doi.org/10.1128/br.18.4.254-274.1954Vera C. Glocklin, Donald Fairbairn The metabolism of Heterakis gallinae. I. Aerobic and anaerobic respiration: Carbohydratesparing action of carbon dioxide, Journal of Cellular and Comparative Physiology 39, no.33 (Feb 2005): 341–356.https://doi.org/10.1002/jcp.1030390302DOROTHY FLORENCE FORWARD THE RESPIRATION OE BARLEY SEEDLINGS IN RELATION TO OXYGEN SUPPLY, New Phytologist 50, no.33 (May 2006): 325–356.https://doi.org/10.1111/j.1469-8137.1952.tb05195.xL. Joe Berry, W.E. Norris Studies of onion root respiration I. Velocity of oxygen consumption in different segments of root at different temperatures as a function of partial pressure of oxygen, Biochimica et Biophysica Acta 3 (Jan 1949): 593–606.https://doi.org/10.1016/0006-3002(49)90133-XBarbara M. Walshe The Oxygen Requirements and Thermal Resistance of Chironomid Larvae from Flowing and from Still Waters, Journal of Experimental Biology 25, no.11 (Mar 1948): 35–44.https://doi.org/10.1242/jeb.25.1.35J. B. Biale, R. E. Young CRITICAL OXYGEN CONCENTRATIONS FOR THE RESPIRATION OF LEMONS, American Journal of Botany 34, no.66 (Jun 1947): 301–309.https://doi.org/10.1002/j.1537-2197.1947.tb12993.x F. W. Weymouth , J. M. Crismon , V. E. Hall , H. S. Belding , and John Field II Total and Tissue Respiration in Relation to Body Weight a Comparison of the Kelp Crab with Other Crustaceans and with Mammals, Physiological Zoology 17, no.11 (Sep 2015): 50–71.https://doi.org/10.1086/physzool.17.1.30151829Richard J. Winzler The respiration of bakers' yeast at low oxygen tension, Journal of Cellular and Comparative Physiology 17, no.33 (Feb 2005): 263–276.https://doi.org/10.1002/jcp.1030170302BARRY COMMONER CYANIDE INHIBITION AS A MEANS OF ELUCIDATING THE MECHANISMS OF CELLULAR RESPIRATION, Biological Reviews 15, no.22 (Apr 1940): 168–201.https://doi.org/10.1111/j.1469-185X.1940.tb00753.xH. D. Landahl Mathematical biophysics of cell respiration II, The Bulletin of Mathematical Biophysics 1, no.11 (Mar 1939): 1–17.https://doi.org/10.1007/BF02478008Joachim Frhr von Ledebur Der Sauerstoff als ökologischer Faktor, (Jan 1939): 173–261.https://doi.org/10.1007/978-3-642-91052-4_2T. C. Scheffer, B. E. Livingston RELATION OF OXYGEN PRESSURE AND TEMPERATURE TO GROWTH AND CARBON‐DIOXIDE PRODUCTION IN THE FUNGUS POLYSTICTUS VERSICOLOR, American Journal of Botany 24, no.33 (Mar 1937): 109–119.https://doi.org/10.1002/j.1537-2197.1937.tb09076.xN. S. Royston Maloeuf Studies on the respiration (and osmoregulation) of animals, Zeitschrift f�r Vergleichende Physiologie 25, no.11 (Jan 1937): 1–28.https://doi.org/10.1007/BF00348489P. S. Tang, C. Y. Lin Studies on the kinetics of cell respiration. IV. Oxidation reduction potentials of Chlorella suspensions in light and in darkness, Journal of Cellular and Comparative Physiology 9, no.11 (Feb 2005): 149–163.https://doi.org/10.1002/jcp.1030090113P. S. Tang Studies on the kinetics of cell respiration. I. The rate of oxygen consumption by Saccharomyces wanching as a function of pH, Journal of Cellular and Comparative Physiology 7, no.33 (Feb 2005): 475–493.https://doi.org/10.1002/jcp.1030070315Jörgen Lehmann Über den Sauerstoffverbrauch bei der vitalen Bernsteinsäureoxydation in Abhängigkeit von pH und Sauerstoffdruck1, Skandinavisches Archiv Für Physiologie 72, no.22 (Apr 2012): 78–91.https://doi.org/10.1111/j.1748-1716.1935.tb00413.x

Referência(s)
Altmetric
PlumX