Search for mutations in a segment of the exon 28 of the human von Willebrand factor gene: New mutations, R1315C and R1341W, associated with type 2M and 2B variants
1998; Wiley; Volume: 59; Issue: 1 Linguagem: Inglês
10.1002/(sici)1096-8652(199809)59
ISSN1096-8652
AutoresPilar Casaña, Francisco Martı́nez, Carmen Espinós, Saturnino Haya, José Ignacio Lorenzo, José A. Aznar,
Tópico(s)Hemophilia Treatment and Research
ResumoAmerican Journal of HematologyVolume 59, Issue 1 p. 57-63 Free Access Search for mutations in a segment of the exon 28 of the human von Willebrand factor gene: New mutations, R1315C and R1341W, associated with type 2M and 2B variants Pilar Casaña, Corresponding Author Pilar Casaña [email protected] Unidad de Coagulopatías Congénitas de la Comunidad Valenciana, Hospital La Fe, Valencia, SpainUnidad de Coagulopatías Congénitas, Hospital La Fe, Avda. Campanar, 21, 46009 Valencia, SpainSearch for more papers by this authorFrancisco Martínez, Francisco Martínez Unidad de Genética y Diagnóstico Prenatal, Hospital La Fe, Valencia, SpainSearch for more papers by this authorCarmen Espinós, Carmen Espinós Unidad de Coagulopatías Congénitas de la Comunidad Valenciana, Hospital La Fe, Valencia, SpainSearch for more papers by this authorSaturnino Haya, Saturnino Haya Unidad de Coagulopatías Congénitas de la Comunidad Valenciana, Hospital La Fe, Valencia, SpainSearch for more papers by this authorJosé I. Lorenzo, José I. Lorenzo Unidad de Coagulopatías Congénitas de la Comunidad Valenciana, Hospital La Fe, Valencia, SpainSearch for more papers by this authorJosé A. Aznar, José A. Aznar Unidad de Coagulopatías Congénitas de la Comunidad Valenciana, Hospital La Fe, Valencia, SpainSearch for more papers by this author Pilar Casaña, Corresponding Author Pilar Casaña [email protected] Unidad de Coagulopatías Congénitas de la Comunidad Valenciana, Hospital La Fe, Valencia, SpainUnidad de Coagulopatías Congénitas, Hospital La Fe, Avda. Campanar, 21, 46009 Valencia, SpainSearch for more papers by this authorFrancisco Martínez, Francisco Martínez Unidad de Genética y Diagnóstico Prenatal, Hospital La Fe, Valencia, SpainSearch for more papers by this authorCarmen Espinós, Carmen Espinós Unidad de Coagulopatías Congénitas de la Comunidad Valenciana, Hospital La Fe, Valencia, SpainSearch for more papers by this authorSaturnino Haya, Saturnino Haya Unidad de Coagulopatías Congénitas de la Comunidad Valenciana, Hospital La Fe, Valencia, SpainSearch for more papers by this authorJosé I. Lorenzo, José I. Lorenzo Unidad de Coagulopatías Congénitas de la Comunidad Valenciana, Hospital La Fe, Valencia, SpainSearch for more papers by this authorJosé A. Aznar, José A. Aznar Unidad de Coagulopatías Congénitas de la Comunidad Valenciana, Hospital La Fe, Valencia, SpainSearch for more papers by this author First published: 07 December 1998 https://doi.org/10.1002/(SICI)1096-8652(199809)59:1 3.0.CO;2-ZCitations: 25AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract von Willebrand Disease (vWD) is the most frequently inherited bleeding disorder in humans, and is caused by a qualitative and/or quantitative abnormality of the von Willebrand factor (vWF). A large number of defects that cause qualitative variants have been located in the A1 domain of the vWF, which contains sites for interaction with platelet glycoprotein Ib (GPIb). We have developed a new approach to detect mutations based on Dde digestion and single-strand conformation polymorphism analysis. A segment of 487 nucleotides, extending from intron 27 to codon 1368 of the pre-pro vWF was amplified from genomic DNA. The cleavage with Dde yields two fragments of appropriate size for this kind of analysis and confirms that the gene, rather than the pseudogene, is being investigated. Six families with type 2B vWD, one type 2M vWD family, and one another type 2A vWD family were studied. After sequencing the fragments with an altered electrophoretic pattern, we found four mutations previously described—R1308C, V1316M, P1337L, and R1306W—in patients with 2B vWD. The last one arose de novo in the patient. In addition, two new candidate mutations were observed: R1315C and R1341W. The first one was associated to type 2M vWD, whereas the one second cosegregated with type 2B vWD. The fact that these new mutations were not found in 100 normal alleles screened further supports their causal relationship with the disease. These mutations, which induce either a gain or a loss of function, further show an important regulatory role of this region in the binding of vWF to GPIb and its implications in causing disease. Am. J. Hematol. 59:57–63, 1998. © 1998 Wiley-Liss, Inc. References 1 Ruggeri ZM, Zimmerman TS: von Willebrand factor and von Willebrand disease. Blood 70: 895– 904, 1987. 2 Eikenboom JCJ, Reitsma PH, Briët E: The inheritance and molecular genetics of von Willebrand's disease. Haemophilia 1: 77– 90, 1995. 3 Ginsburg D, Handin RI, Bonthron DT, Donlon TA, Bruns GAP, Latt SA, Orkin SH: Human von Willebrand factor (vWF): Isolation of complementary DNA (cDNA) clones and chromosomal localization. Science 228: 1401– 1406, 1985. 4 Verweij CL, de Vries CJM, Distel B, van Zonneveld A-J, von Kessel AG, van Mourik JA, Pannekoek H: Construction of cDNA coding for human von Willebrand factor using antibody probes for colonyscreening and mapping of the chromosomal gene. Nucleic Acids Res 13: 4699– 4717, 1985. 5 Mancuso DJ, Tuley EA, Westfield LA, Worrall NK, Shelton-Inloes BB, Sorace JM, Alevy YG, Sadler JE: Structure of the gene for human von Willebrand factor. J Biol Chem 264: 19514– 19527, 1989. 6 Mancuso DJ, Tuley EA, Westfield LA, Lester-Mancuso TL, Le Beau MM, Sorace JM, Sadler JE: Human von Willebrand factor gene and pseudogene: Structural analysis and differentiation by polymerase chain reaction. Biochemistry 30: 253– 269, 1991. 7 Tuddenham, EGD and Cooper DN: The von Willebrand Factor and von Willebrand disease. In JA Fraser Roberts, CO Carter, eds. The Molecular Genetics of Haemostasis and its Inherited Disorders. New York: Oxford University Press, 1994, pp 374– 401. 8 Sadler JE: A revised classification of von Willebrand disease. Thromb Haemost 71: 520– 525, 1994. 9 Sadler JE, Gralnick HR: A new classification for von Willebrand disease-Commentary. Blood 84: 676– 679, 1994. 10 Fujimura Y, Titani K, Holland LZ, Russell SR, Roberts JR, Elder JH, Ruggeri ZM, Zimmerman TS: von Willebrand factor. A reduced and alkylated 52/48 kDa fragment beginning at amino acid residue 449 contains the domain interacting with platelet glycoprotein Ib. J Biol Chem 261: 381– 385, 1986. 11 Ginsburg D, Sadler JE: von Willebrand disease: A database of point mutations, insertions, and deletions. Thromb Haemost 69: 177– 184, 1993. 12 MacFarlane DE, Stibbe J, Kirby EP, Zucker MB, Grant RA, McPherson J: A method for assaying von Willebrand factor (ristocetin cofactor). Thromb Diath Haemorrh 34: 306– 308, 1975. 13 Jorquera JI, Montoro JM, Aznar JA, Perales MA, Lerma MA, Curats R, Bañuls E, Casaña P: Metodo ELISA en microplaca desarrollado con antisueros comerciales para medir el antigeno del factor von Willebrand. Sangre 34: 147– 150, 1989. 14 Holmberg L, Berntorp E, Donner M, Nilsson IM: von Willebrand's disease characterized by increased ristocetin sensitivity and the presence of all von Willebrand factor multimers in plasma. Blood 68: 668– 672, 1986. 15 Ruggeri ZM, Zimmerman TS: The complex multimeric composition of Factor VIII/von Willebrand factor. Blood 57: 1140– 1143, 1981. 16 Schneppenheim R, Budde U, Dahlmann N, Rautenberg P: Luminography -a new, highly sensitive visualization method for electrophoresis. Electrophoresis 12: 367– 372, 1991. 17 Blin N, Stafford DW: A general method for isolation of high molecular weight DNA from eukaryocytes. Nucleic Acid Res 3: 2303– 2308, 1976. 18 Casaña P, Martinez F, Aznar JA, Lorenzo JI, Jorquera JI: Practical application of three polymorphic microsatellites in intron 40 of the human von Willebrand factor gene. Haemostasis 25(6): 264– 271, 1995. 19 Bonthron D, Orkin SH: The human von Willebrand factor gene: Structure of the 5′ region. Eur J Biochem 171: 51– 57, 1988. 20 Casaña P, Haya S, Lorenzo JI, Martínez F, Montoro JM, Curats R, Aznar JA: Detection of mutations and clinical manifestations in four spanish families with type 2B von Willebrand disease. Rev Iberoam Thromb Hemost 10: 15– 22, 1997. 21 Cooney KA, Ginsburg D: Comparative analysis of type 2b von Willebrand disease mutations: Implications for the mechanism of von Willebrand factor binding to platelets. Blood 87: 2322– 2328, 1996. 22 Casaña P, Lorenzo JI, Martínez F, Haya S, Montoro JM, Aznar JA: Single-strand conformation polymorphism analysis in the A1 domain of the von Willebrand factor gene (Abstract). Thromb Haemostasis Suppl.), June 1997: 655– 656, 1997. 23 Meyer D, Fressinaud E, Gaucher C, Lavergne JM, Hilbert L, Ribba AS, Jorieux S, Mazurier C: Gene defects in 150 unrelated French cases with type 2 von Willebrand disease: From the patient to the gene. Thromb Haemost 78: 451– 456, 1997. 24 Bahnak BR, Lavergne JM, Ferreira V, Kerbiriou-Nabias D, Meyer D: Comparison of the primary structure of the functional domains of human and porcine von Willebrand factor that mediate platelet adhesion. Biochem Biophys Res Commun 182: 561– 568, 1992. 25 Bird AP: DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8: 1499– 1504, 1980. Citing Literature Volume59, Issue1September 1998Pages 57-63 ReferencesRelatedInformation
Referência(s)