Artigo Acesso aberto Revisado por pares

An adaptive least-squares method for the compressible Euler equations

1999; Wiley; Volume: 31; Issue: 7 Linguagem: Inglês

10.1002/(sici)1097-0363(19991215)31

ISSN

1097-0363

Autores

Farzad Taghaddosi, Wagdi G. Habashi, G. Guèvremont, D. Ait‐Ali‐Yahia,

Tópico(s)

Fluid Dynamics and Turbulent Flows

Resumo

International Journal for Numerical Methods in FluidsVolume 31, Issue 7 p. 1121-1139 Research Article An adaptive least-squares method for the compressible Euler equations F. Taghaddosi, F. Taghaddosi CFD Laboratory, Department of Mechanical Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., ER 301, Montréal, Québec, Canada, H3G 1M8Search for more papers by this authorW.G. Habashi, Corresponding Author W.G. Habashi CFD Laboratory, Department of Mechanical Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., ER 301, Montréal, Québec, Canada, H3G 1M8Department of Mechanical Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, ER 301, Montréal, Québec, Canada, H3G 1M8===Search for more papers by this authorG. Guèvremont, G. Guèvremont CFD Laboratory, Department of Mechanical Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., ER 301, Montréal, Québec, Canada, H3G 1M8Search for more papers by this authorD. Ait-Ali-Yahia, D. Ait-Ali-Yahia CFD Laboratory, Department of Mechanical Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., ER 301, Montréal, Québec, Canada, H3G 1M8Search for more papers by this author F. Taghaddosi, F. Taghaddosi CFD Laboratory, Department of Mechanical Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., ER 301, Montréal, Québec, Canada, H3G 1M8Search for more papers by this authorW.G. Habashi, Corresponding Author W.G. Habashi CFD Laboratory, Department of Mechanical Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., ER 301, Montréal, Québec, Canada, H3G 1M8Department of Mechanical Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, ER 301, Montréal, Québec, Canada, H3G 1M8===Search for more papers by this authorG. Guèvremont, G. Guèvremont CFD Laboratory, Department of Mechanical Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., ER 301, Montréal, Québec, Canada, H3G 1M8Search for more papers by this authorD. Ait-Ali-Yahia, D. Ait-Ali-Yahia CFD Laboratory, Department of Mechanical Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., ER 301, Montréal, Québec, Canada, H3G 1M8Search for more papers by this author First published: 19 November 1999 https://doi.org/10.1002/(SICI)1097-0363(19991215)31:7 3.0.CO;2-RCitations: 14AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract An adaptive least-squares finite element method is used to solve the compressible Euler equations in two dimensions. Since the method is naturally diffusive, no explicit artificial viscosity is added to the formulation. The inherent artificial viscosity, however, is usually large and hence does not allow sharp resolution of discontinuities unless extremely fine grids are used. To remedy this, while retaining the advantages of the least-squares method, a moving-node grid adaptation technique is used. The outstanding feature of the adaptive method is its sensitivity to directional features like shock waves, leading to the automatic construction of adapted grids where the element edge(s) are strongly aligned with such flow phenomena. Using well-known transonic and supersonic test cases, it has been demonstrated that by coupling the least-squares method with a robust adaptive method shocks can be captured with high resolution despite using relatively coarse grids. Copyright © 1999 John Wiley & Sons, Ltd. References 1D. Ait-Ali-Yahia, W.G. Habashi, A. Tam, M.-G. Vallet and M. Fortin, 'A directionally-adaptive methodology using an edge-based error estimate on quadrilateral grids', Int J. Numer. Methods Fluids, 23, 673–690 (1996). 2O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994. 3G.S. Baruzzi, W.G. Habashi and M.M. Hafez, 'Finite element solutions of the Euler equations for transonic external flows', AIAA J., 29, 1886–1893 (1991). 4G.S. Baruzzi, W.G. Habashi and M.M. Hafez, 'A second-order finite element method for the solution of the transonic Euler and Navier–Stokes equations', Int. J. Numer. Methods Fluids, 20, 671–693 (1995). 5G.J. Le Beau, S.E. Ray, S.K. Aliabadi and T.E. Tezduyar, 'SUPG finite element computation of compressible flows with the entropy and conservation variables formulations', Comput. Methods Appl. Mech. Eng., 104, 397–422 (1993). 6A.L. Brooks and T.J.R. Hughes, 'Streamline upwind Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations', Comput. Methods Appl. Mech. Eng., 32, 199–259 (1982). 7Ch.H. Bruneau, J. Laminie and J.J. Chattot, 'Computation of 3D vortex flows past a flat plate at incidence through a variational approach of the full steady Euler equations', Int. J. Numer. Methods Fluids, 9, 305–323 (1989). 8G.F. Carey and B.-N. Jiang, 'Least-squares finite element method and preconditioned conjugate gradient solution', Int. J. Numer. Methods Eng., 24, 1283–1296 (1987). 9G.F. Carey and B.-N. Jiang, 'Least-squares finite elements for first-order hyperbolic systems', Int. J. Numer. Methods Eng., 26, 81–93 (1988). 10S. Eidelman, P. Colella and R.P. Shreeve, 'Application of the Godunov method and its second-order extension to cascade flow modeling', AIAA J., 22, 1609–1615 (1984). 11C.A.J. Fletcher, 'A primitive variable finite element formulation for inviscid compressible flow', J. Comput. Phys., 33, 301–312 (1979). 12P.A. Gnoffo, 'A finite-volume, adaptive grid algorithm applied to planetary entry flowfields', AIAA J., 21, 1249–1254 (1983). 13T.J.R. Hughes and T.E. Tezduyar, 'Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations', Comput. Methods Appl. Mech. Eng., 45, 217–284 (1984). 14T.J.R. Hughes, M. Mallet and A. Mizukami, 'A new finite element formulation for computational fluid dynamics: II. Beyond SUPG', Comput. Methods Appl. Mech. Eng., 54, 341–355 (1986). 15B.-N. Jiang and G.F. Carey, 'Adaptive refinement for least-squares finite elements with element-by-element conjugate gradient solution', Int. J. Numer. Methods Eng., , 580, 24, 569 (1987). 16B.-N. Jiang and G.F. Carey, 'Least-squares finite element methods for compressible Euler equations', Int. J. Numer. Methods Fluids, 10, 557–568 (1990). 17B.-N. Jiang and L.A. Povinelli, 'Least-squares finite element method for fluid dynamics', Comput. Methods Appl. Mech. Eng., 81, 13–37 (1990). 18Y. Jiang, C.P. Chen and H.M. Shang, ' A new pressure–velocity coupling procedure for inviscid and viscous flows at all speeds', Proceedings of the Fourth Int. Symp. on Computational Fluid Dynamics, Vol. 1, University of California, Davis, September 9–12, 1991, pp. 545–550. 19D. Lefebvre and J. Peraire, 'Finite element least squares solution of the Euler equations using linear and quadratic approximations', Int. J. Comp. Fluid Dyn., 1, 1–23 (1993). 20R. Löhner, K. Morgan and O.C. Zienkiewicz, 'The solution of non-linear hyperbolic equation systems by the finite element method', Int. J. Num. Meth. Fluids, 4, 1043–1063 (1984). 21P.P. Lynn and S.K. Arya, 'Use of the least squares criterion in the finite element formulation', Int. J. Num. Meth. Eng., 6, 75–88 (1973). 22K. Nakahashi and G.S. Diewert, 'Self-adaptive-grid method with application to airfoil flow', AIAA J., 25, 513–520 (1987). 23H. Nguyen and J. Reynen, 'A space–time least-square finite element scheme for advection–diffusion equations', Comp. Meth. Appl. Mech. Eng., 42, 331–342 (1984). 24R.-H. Ni, 'A multiple grid scheme for solving the Euler equations', AIAA J., 20, 1565–1571 (1982). 25J.T. Oden, T. Strouboulis and Ph. Devloo, 'Adaptive finite element methods for high-speed compressible flows', Int. J. Num. Meth. Fluids, 7, 1211–1228 (1987). 26J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz, 'Adaptive remeshing for compressible flow computations', J. Comp. Phys., 72, 449–466 (1987). 27J.F. Polk and P.P. Lynn, 'A least squares finite element approach to unsteady gas dynamics', Int. J. Num. Meth. Eng., 12, 3–10 (1978). 28J.N. Reddy, An Introduction to the Finite Element Method, McGraw-Hill, New York, 1993. 29L.Q. Tang and T.T.H. Tsang, 'An efficient least-squares finite element method for incompressible flows and transport processes', Int. J. Comp. Fluid Dyn., 4, 21–39 (1995). Citing Literature Volume31, Issue715 December 1999Pages 1121-1139 ReferencesRelatedInformation

Referência(s)