Artigo Acesso aberto Revisado por pares

A Movie of RNA Polymerase II Transcription

2012; Cell Press; Volume: 149; Issue: 7 Linguagem: Inglês

10.1016/j.cell.2012.06.006

ISSN

1097-4172

Autores

Alan C. M. Cheung, Patrick Cramer,

Tópico(s)

RNA Research and Splicing

Resumo

We provide here a molecular movie that captures key aspects of RNA polymerase II initiation and elongation. To create the movie, we combined structural snapshots of the initiation-elongation transition and of elongation, including nucleotide addition, translocation, pausing, proofreading, backtracking, arrest, reactivation, and inhibition. The movie reveals open questions about the mechanism of transcription and provides a useful teaching tool. We provide here a molecular movie that captures key aspects of RNA polymerase II initiation and elongation. To create the movie, we combined structural snapshots of the initiation-elongation transition and of elongation, including nucleotide addition, translocation, pausing, proofreading, backtracking, arrest, reactivation, and inhibition. The movie reveals open questions about the mechanism of transcription and provides a useful teaching tool. RNA polymerase (Pol) II is a 12 subunit enzyme that depends on additional factors for transcription initiation, elongation, and termination (Orphanides et al., 1996Orphanides G. Lagrange T. Reinberg D. The general transcription factors of RNA polymerase II.Genes Dev. 1996; 10: 2657-2683Crossref PubMed Scopus (848) Google Scholar, Reines et al., 1996Reines D. Conaway J.W. Conaway R.C. The RNA polymerase II general elongation factors.Trends Biochem. Sci. 1996; 21: 351-355Abstract Full Text PDF PubMed Scopus (120) Google Scholar, Roeder, 1996Roeder R.G. The role of general initiation factors in transcription by RNA polymerase II.Trends Biochem. Sci. 1996; 21: 327-335Abstract Full Text PDF PubMed Scopus (716) Google Scholar, Sims et al., 2004Sims III, R.J. Belotserkovskaya R. Reinberg D. Elongation by RNA polymerase II: the short and long of it.Genes Dev. 2004; 18: 2437-2468Crossref PubMed Scopus (568) Google Scholar, Svejstrup, 2004Svejstrup J.Q. The RNA polymerase II transcription cycle: cycling through chromatin.Biochim. Biophys. Acta. 2004; 1677: 64-73Crossref PubMed Scopus (72) Google Scholar, Thomas and Chiang, 2006Thomas M.C. Chiang C.M. The general transcription machinery and general cofactors.Crit. Rev. Biochem. Mol. Biol. 2006; 41: 105-178Crossref PubMed Scopus (614) Google Scholar, Vannini and Cramer, 2012Vannini A. Cramer P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries.Mol. Cell. 2012; 45: 439-446Abstract Full Text Full Text PDF PubMed Scopus (287) Google Scholar). Transcription initiation begins with the formation of a closed promoter complex, which contains the 10 subunit Pol II core, the Pol II subcomplex Rpb4/7, and the transcription factors (TF) IID (which includes the TATA-box binding protein TBP and TBP-associated factors), TFIIB, TFIIE, TFIIF, and TFIIH. Isomerisation of the closed to the open promoter complex involves separation of the DNA strands (i.e., DNA “melting”) to form an unwound DNA region (the transcription “bubble”) and positioning of the emerging template single strand in the active center of Pol II, which allows RNA synthesis to initiate from the transcription start site (Saunders et al., 2006Saunders A. Core L.J. Lis J.T. Breaking barriers to transcription elongation.Nat. Rev. Mol. Cell Biol. 2006; 7: 557-567Crossref PubMed Scopus (387) Google Scholar, Wade and Struhl, 2008Wade J.T. Struhl K. The transition from transcriptional initiation to elongation.Curr. Opin. Genet. Dev. 2008; 18: 130-136Crossref PubMed Scopus (93) Google Scholar). The initially transcribing complex (ITC) is unstable and releases short RNAs during abortive initiation (Luse and Jacob, 1987Luse D.S. Jacob G.A. Abortive initiation by RNA polymerase II in vitro at the adenovirus 2 major late promoter.J. Biol. Chem. 1987; 262: 14990-14997Abstract Full Text PDF PubMed Google Scholar). When the RNA reaches a critical length, initiation factors are released, and a stable elongation complex (EC) is formed (Hieb et al., 2006Hieb A.R. Baran S. Goodrich J.A. Kugel J.F. An 8 nt RNA triggers a rate-limiting shift of RNA polymerase II complexes into elongation.EMBO J. 2006; 25: 3100-3109Crossref PubMed Scopus (14) Google Scholar, Holstege et al., 1997Holstege F.C.P. Fiedler U. Timmers H.T.M. Three transitions in the RNA polymerase II transcription complex during initiation.EMBO J. 1997; 16: 7468-7480Crossref PubMed Scopus (158) Google Scholar), which contains a DNA-RNA hybrid of eight to nine base pairs (Kireeva et al., 2000Kireeva M.L. Komissarova N. Waugh D.S. Kashlev M. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex.J. Biol. Chem. 2000; 275: 6530-6536Crossref PubMed Scopus (189) Google Scholar, Gnatt et al., 2001Gnatt A.L. Cramer P. Fu J. Bushnell D.A. Kornberg R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution.Science. 2001; 292: 1876-1882Crossref PubMed Scopus (744) Google Scholar). During transcription elongation, the EC repeatedly performs the nucleotide addition cycle (NAC) to attach a nucleotide to the growing messenger RNA (mRNA) chain by catalyzing DNA template-directed formation of an RNA phosphodiester bond (Brueckner et al., 2009Brueckner F. Ortiz J. Cramer P. A movie of the RNA polymerase nucleotide addition cycle.Curr. Opin. Struct. Biol. 2009; 19: 294-299Crossref PubMed Scopus (70) Google Scholar). The EC can also adopt “offline” states when it transiently pauses at certain DNA sequences (Landick, 2006Landick R. The regulatory roles and mechanism of transcriptional pausing.Biochem. Soc. Trans. 2006; 34: 1062-1066Crossref PubMed Scopus (193) Google Scholar), backtracks and arrests (Cheung and Cramer, 2011Cheung A.C. Cramer P. Structural basis of RNA polymerase II backtracking, arrest and reactivation.Nature. 2011; 471: 249-253Crossref PubMed Scopus (243) Google Scholar, Nudler et al., 1997Nudler E. Mustaev A. Lukhtanov E. Goldfarb A. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase.Cell. 1997; 89: 33-41Abstract Full Text Full Text PDF PubMed Google Scholar, Wang et al., 2009Wang D. Bushnell D.A. Huang X. Westover K.D. Levitt M. Kornberg R.D. Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution.Science. 2009; 324: 1203-1206Crossref PubMed Scopus (185) Google Scholar), encounters a DNA lesion in the template strand (Brueckner et al., 2007Brueckner F. Hennecke U. Carell T. Cramer P. CPD damage recognition by transcribing RNA polymerase II.Science. 2007; 315: 859-862Crossref PubMed Scopus (185) Google Scholar, Damsma et al., 2007Damsma G.E. Alt A. Brueckner F. Carell T. Cramer P. Mechanism of transcriptional stalling at cisplatin-damaged DNA.Nat. Struct. Mol. Biol. 2007; 14: 1127-1133Crossref PubMed Scopus (129) Google Scholar, Damsma and Cramer, 2009Damsma G.E. Cramer P. Molecular basis of transcriptional mutagenesis at 8-oxoguanine.J. Biol. Chem. 2009; 284: 31658-31663Crossref PubMed Scopus (60) Google Scholar, Tornaletti, 2009Tornaletti S. DNA repair in mammalian cells: transcription-coupled DNA repair: directing your effort where it's most needed.Cell. Mol. Life Sci. 2009; 66: 1010-1020Crossref PubMed Scopus (61) Google Scholar), or misincorporates a noncomplementary nucleotide (Sydow and Cramer, 2009Sydow J.F. Cramer P. RNA polymerase fidelity and transcriptional proofreading.Curr. Opin. Struct. Biol. 2009; 19: 732-739Crossref PubMed Scopus (107) Google Scholar). Elongation factors, such as TFIIS and Spt4/5, are required to deal with these obstacles. TFIIS can reactivate an arrested EC by stimulating RNA cleavage (Reines et al., 1989Reines D. Chamberlin M.J. Kane C.M. Transcription elongation factor SII (TFIIS) enables RNA polymerase II to elongate through a block to transcription in a human gene in vitro.J. Biol. Chem. 1989; 264: 10799-10809Abstract Full Text PDF PubMed Google Scholar, Rudd et al., 1994Rudd M.D. Izban M.G. Luse D.S. The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes.Proc. Natl. Acad. Sci. USA. 1994; 91: 8057-8061Crossref PubMed Scopus (107) Google Scholar), and Spt4/5, which has a bacterial homolog, can increase transcription processivity (i.e., the property of the polymerase to stay associated with a transcribed template) (Burova et al., 1995Burova E. Hung S.C. Sagitov V. Stitt B.L. Gottesman M.E. Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro.J. Bacteriol. 1995; 177: 1388-1392Crossref PubMed Google Scholar, Martinez-Rucobo et al., 2011Martinez-Rucobo F.W. Sainsbury S. Cheung A.C.M. Cramer P. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.EMBO J. 2011; 30: 1302-1310Crossref PubMed Scopus (185) Google Scholar, Werner, 2012Werner F. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life.J. Mol. Biol. 2012; 417: 13-27Crossref PubMed Scopus (96) Google Scholar). To learn more about the prokaryotic RNA polymerase, see the Perspective by Nudler, 2012Nudler E. RNA polymerase backtracking in gene regulation and genome instability.Cell. 2012; 149 (this issue): 1438-1445Abstract Full Text Full Text PDF PubMed Scopus (176) Google Scholar in this issue of Cell. Crystal structures of multisubunit RNA polymerases from all three domains of life—bacteria (Vassylyev et al., 2002Vassylyev D.G. Sekine S. Laptenko O. Lee J. Vassylyeva M.N. Borukhov S. Yokoyama S. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution.Nature. 2002; 417: 712-719Crossref PubMed Scopus (627) Google Scholar, Zhang et al., 1999Zhang G.Y. Campbell E.A. Minakhin L. Richter C. Severinov K. Darst S.A. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution.Cell. 1999; 98: 811-824Abstract Full Text Full Text PDF PubMed Scopus (670) Google Scholar), archaea (Hirata et al., 2008Hirata A. Klein B.J. Murakami K.S. The X-ray crystal structure of RNA polymerase from Archaea.Nature. 2008; 451: 851-854Crossref PubMed Scopus (163) Google Scholar, Korkhin et al., 2009Korkhin Y. Unligil U.M. Littlefield O. Nelson P.J. Stuart D.I. Sigler P.B. Bell S.D. Abrescia N.G.A. Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure.PLoS Biol. 2009; 7: e102Crossref Scopus (94) Google Scholar), and eukaryotes (Cramer et al., 2000Cramer P. Bushnell D.A. Fu J. Gnatt A.L. Maier-Davis B. Thompson N.E. Burgess R.R. Edwards A.M. David P.R. Kornberg R.D. Architecture of RNA polymerase II and implications for the transcription mechanism.Science. 2000; 288: 640-649Crossref PubMed Scopus (469) Google Scholar, Cramer et al., 2001Cramer P. Bushnell D.A. Kornberg R.D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.Science. 2001; 292: 1863-1876Crossref PubMed Scopus (966) Google Scholar) —have been determined. Based on these data, the initiation and elongation phases of transcription were delineated over the last decade (Cramer et al., 2008Cramer P. Armache K.J. Baumli S. Benkert S. Brueckner F. Buchen C. Damsma G.E. Dengl S. Geiger S.R. Jasiak A.J. et al.Structure of eukaryotic RNA polymerases.Annu. Rev. Biophys. 2008; 37: 337-352Crossref PubMed Scopus (218) Google Scholar, Hahn, 2004Hahn S. Structure and mechanism of the RNA polymerase II transcription machinery.Nat. Struct. Mol. Biol. 2004; 11: 394-403Crossref PubMed Scopus (367) Google Scholar, Lane and Darst, 2010Lane W.J. Darst S.A. Molecular evolution of multisubunit RNA polymerases: structural analysis.J. Mol. Biol. 2010; 395: 686-704Crossref PubMed Scopus (95) Google Scholar). Most of the structural information was derived from X-ray analysis, but other techniques were also used, including fluorescence resonance energy transfer (FRET), electron microscopy, and protein crosslinking. Here, we integrated structural information on Pol II complexes with nucleic acids and transcription factors into a movie that visualizes Pol II initiation and elongation (Movie S1 available online). The movie was assembled from a collection of crystal structures and models (Table 1) that were combined into functional polymerase complexes (Figures 1 and 2).Table 1Structures Used to Generate the Transcription MovieStructureOrganismPDBReferencesRpb4/7S. cerevisiae1Y14(Armache et al., 2005Armache K.J. Mitterweger S. Meinhart A. Cramer P. Structures of complete RNA polymerase II and its subcomplex, Rpb4/7.J. Biol. Chem. 2005; 280: 7131-7134Crossref PubMed Scopus (176) Google Scholar)10 subunit Pol IIS. cerevisiae1I50(Cramer et al., 2001Cramer P. Bushnell D.A. Kornberg R.D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.Science. 2001; 292: 1863-1876Crossref PubMed Scopus (966) Google Scholar)12 subunit Pol IIS. cerevisiae1WCM(Armache et al., 2005Armache K.J. Mitterweger S. Meinhart A. Cramer P. Structures of complete RNA polymerase II and its subcomplex, Rpb4/7.J. Biol. Chem. 2005; 280: 7131-7134Crossref PubMed Scopus (176) Google Scholar)TFIIF dimerization moduleH. sapiens1F3UaHomology modeling was used to generate a model for S. cerevisiae.(Gaiser et al., 2000Gaiser F. Tan S. Richmond T.J. Novel dimerization fold of RAP30/RAP74 in human TFIIF at 1.7 A resolution.J. Mol. Biol. 2000; 302: 1119-1127Crossref PubMed Scopus (72) Google Scholar)Pol II-TFIIF complex modelS. cerevisiaeaHomology modeling was used to generate a model for S. cerevisiae., bModeled from crosslinking data.(Chen et al., 2010Chen Z.A. Jawhari A. Fischer L. Buchen C. Tahir S. Kamenski T. Rasmussen M. Lariviere L. Bukowski-Wills J.-C. Nilges M. et al.Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry.EMBO J. 2010; 29: 717-726Crossref PubMed Scopus (324) Google Scholar)TBP-TFIIB-DNA complexH. sapiens/A. thaliana1VOLcThese structures were combined to create open and closed promoter complex models (Kostrewa et al., 2009).(Nikolov et al., 1995Nikolov D.B. Chen H. Halay E.D. Usheva A.A. Hisatake K. Lee D.K. Roeder R.G. Burley S.K. Crystal structure of a TFIIB-TBP-TATA-element ternary complex.Nature. 1995; 377: 119-128Crossref PubMed Scopus (482) Google Scholar)Pol II-TFIIB complexS. cerevisiae3K1FcThese structures were combined to create open and closed promoter complex models (Kostrewa et al., 2009).(Kostrewa et al., 2009Kostrewa D. Zeller M.E. Armache K.-J. Seizl M. Leike K. Thomm M. Cramer P. RNA polymerase II-TFIIB structure and mechanism of transcription initiation.Nature. 2009; 462: 323-330Crossref PubMed Scopus (227) Google Scholar)Pol II partial open complex with DNAS. cerevisiae4A3I(Cheung et al., 2011Cheung A.C. Sainsbury S. Cramer P. Structural basis of initial RNA polymerase II transcription.EMBO J. 2011; 30: 4755-4763Crossref PubMed Scopus (68) Google Scholar)Minimal initially transcribing complexesS. cerevisiaedPDB codes 4A3G, 4A3J, 4A3B, 4A3M, 4A3C, 4A3E, 4A3D, 4A3F, 4A3K, and 4A3L.(Cheung et al., 2011Cheung A.C. Sainsbury S. Cramer P. Structural basis of initial RNA polymerase II transcription.EMBO J. 2011; 30: 4755-4763Crossref PubMed Scopus (68) Google Scholar)Archaeal RNA polymerase clamp-Spt4/5 complexP. furiosis3QQCeThese structures were used to model the Pol II-Spt4/5 EC (Martinez-Rucobo et al., 2011).(Martinez-Rucobo et al., 2011Martinez-Rucobo F.W. Sainsbury S. Cheung A.C.M. Cramer P. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.EMBO J. 2011; 30: 1302-1310Crossref PubMed Scopus (185) Google Scholar)Eukaryotic Spt4/5S. cerevisiae2EXUeThese structures were used to model the Pol II-Spt4/5 EC (Martinez-Rucobo et al., 2011).(Guo et al., 2008Guo M. Xu F. Yamada J. Egelhofer T. Gao Y. Hartzog G.A. Teng M. Niu L. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation.Structure. 2008; 16: 1649-1658Abstract Full Text Full Text PDF PubMed Scopus (54) Google Scholar)Pol II EC with exiting RNA, upstream DNA duplex, and nontemplate strandS. cerevisiaeeThese structures were used to model the Pol II-Spt4/5 EC (Martinez-Rucobo et al., 2011)., fPositions of the RNA, upstream DNA duplex, and nontemplate strand were determined by using single-molecule FRET.(Andrecka et al., 2008Andrecka J. Lewis R. Brückner F. Lehmann E. Cramer P. Michaelis J. Single-molecule tracking of mRNA exiting from RNA polymerase II.Proc. Natl. Acad. Sci. USA. 2008; 105: 135-140Crossref PubMed Scopus (92) Google Scholar, Andrecka et al., 2009Andrecka J. Treutlein B. Arcusa M.A. Muschielok A. Lewis R. Cheung A.C.M. Cramer P. Michaelis J. Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex.Nucleic Acids Res. 2009; 37: 5803-5809Crossref PubMed Scopus (77) Google Scholar)Posttranslocated complete ECS. cerevisiae1Y1WeThese structures were used to model the Pol II-Spt4/5 EC (Martinez-Rucobo et al., 2011)., gUsed to model the nucleotide addition cycle.(Kettenberger et al., 2004Kettenberger H. Armache K.J. Cramer P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS.Mol. Cell. 2004; 16: 955-965Abstract Full Text Full Text PDF PubMed Scopus (344) Google Scholar)Bacterial EC substrate complex, preinsertion stateT. thermophilus2PPBgUsed to model the nucleotide addition cycle.(Vassylyev et al., 2007bVassylyev D.G. Vassylyeva M.N. Zhang J. Palangat M. Artsimovitch I. Landick R. Structural basis for substrate loading in bacterial RNA polymerase.Nature. 2007; 448: 163-168Crossref PubMed Scopus (287) Google Scholar)EC substrate complex, insertion stateS. cerevisiae2E2HgUsed to model the nucleotide addition cycle.(Wang et al., 2006Wang D. Bushnell D.A. Westover K.D. Kaplan C.D. Kornberg R.D. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis.Cell. 2006; 127: 941-954Abstract Full Text Full Text PDF PubMed Scopus (361) Google Scholar)Pretranslocated ECS. cerevisiae1I6HgUsed to model the nucleotide addition cycle.(Gnatt et al., 2001Gnatt A.L. Cramer P. Fu J. Bushnell D.A. Kornberg R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution.Science. 2001; 292: 1876-1882Crossref PubMed Scopus (744) Google Scholar)α-Amanitin-inhibited ECS. cerevisiae2VUMgUsed to model the nucleotide addition cycle.(Brueckner and Cramer, 2008Brueckner F. Cramer P. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation.Nat. Struct. Mol. Biol. 2008; 15: 811-818Crossref PubMed Scopus (191) Google Scholar)Bacterial RNA polymerase ECT. thermophilus1IW7gUsed to model the nucleotide addition cycle.(Vassylyev et al., 2002Vassylyev D.G. Sekine S. Laptenko O. Lee J. Vassylyeva M.N. Borukhov S. Yokoyama S. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution.Nature. 2002; 417: 712-719Crossref PubMed Scopus (627) Google Scholar)Paused Pol II with frayed RNAS. cerevisiae3HOU(Sydow et al., 2009Sydow J.F. Brueckner F. Cheung A.C.M. Damsma G.E. Dengl S. Lehmann E. Vassylyev D. Cramer P. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA.Mol. Cell. 2009; 34: 710-721Abstract Full Text Full Text PDF PubMed Scopus (140) Google Scholar)Arrested Pol II with backtracked RNAS. cerevisiae3PO2(Cheung and Cramer, 2011Cheung A.C. Cramer P. Structural basis of RNA polymerase II backtracking, arrest and reactivation.Nature. 2011; 471: 249-253Crossref PubMed Scopus (243) Google Scholar)Pol II reactivation intermediate with TFIISS. cerevisiae3PO3(Cheung and Cramer, 2011Cheung A.C. Cramer P. Structural basis of RNA polymerase II backtracking, arrest and reactivation.Nature. 2011; 471: 249-253Crossref PubMed Scopus (243) Google Scholar)a Homology modeling was used to generate a model for S. cerevisiae.b Modeled from crosslinking data.c These structures were combined to create open and closed promoter complex models (Kostrewa et al., 2009Kostrewa D. Zeller M.E. Armache K.-J. Seizl M. Leike K. Thomm M. Cramer P. RNA polymerase II-TFIIB structure and mechanism of transcription initiation.Nature. 2009; 462: 323-330Crossref PubMed Scopus (227) Google Scholar).d PDB codes 4A3G, 4A3J, 4A3B, 4A3M, 4A3C, 4A3E, 4A3D, 4A3F, 4A3K, and 4A3L.e These structures were used to model the Pol II-Spt4/5 EC (Martinez-Rucobo et al., 2011Martinez-Rucobo F.W. Sainsbury S. Cheung A.C.M. Cramer P. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.EMBO J. 2011; 30: 1302-1310Crossref PubMed Scopus (185) Google Scholar).f Positions of the RNA, upstream DNA duplex, and nontemplate strand were determined by using single-molecule FRET.g Used to model the nucleotide addition cycle. Open table in a new tab Figure 2Snapshots from the MovieShow full captionRepresentative still images from the movie corresponding to the seven functional states shown in Figure 1 (A, initiation-competent complete Pol II-TFIIF complex; B, minimal closed promoter complex; C, minimal open promoter complex; D, initially transcribing complex; E, Pol II-Spt4/5 elongation complex; F, arrested complex; G, Pol II-TFIIS reactivation intermediate). Side views are depicted except for (A), which shows the front view (Cramer et al., 2001Cramer P. Bushnell D.A. Kornberg R.D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.Science. 2001; 292: 1863-1876Crossref PubMed Scopus (966) Google Scholar).View Large Image Figure ViewerDownload Hi-res image Download (PPT) Representative still images from the movie corresponding to the seven functional states shown in Figure 1 (A, initiation-competent complete Pol II-TFIIF complex; B, minimal closed promoter complex; C, minimal open promoter complex; D, initially transcribing complex; E, Pol II-Spt4/5 elongation complex; F, arrested complex; G, Pol II-TFIIS reactivation intermediate). Side views are depicted except for (A), which shows the front view (Cramer et al., 2001Cramer P. Bushnell D.A. Kornberg R.D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.Science. 2001; 292: 1863-1876Crossref PubMed Scopus (966) Google Scholar). All structures and models were superimposed onto the structure of the 12 subunit Pol II (PDB code 1WCM) (Armache et al., 2005Armache K.J. Mitterweger S. Meinhart A. Cramer P. Structures of complete RNA polymerase II and its subcomplex, Rpb4/7.J. Biol. Chem. 2005; 280: 7131-7134Crossref PubMed Scopus (176) Google Scholar), which was used as a reference. Modeling, prior to animation, was performed with Coot (Emsley et al., 2010Emsley P. Lohkamp B. Scott W.G. Cowtan K. Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 486-501Crossref PubMed Scopus (17085) Google Scholar). We used UCSF Chimera to generate all animations, labeling, and morphing interpolations between structures (Pettersen et al., 2004Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF Chimera—a visualization system for exploratory research and analysis.J. Comput. Chem. 2004; 25: 1605-1612Crossref PubMed Scopus (27950) Google Scholar), and then we used FFMPEG (http://ffmpeg.org) to encode the resulting image frames into video. Initiation and elongation factors are colored green and orange, respectively, and flexible polypeptide chains are represented by dotted lines. The orientations of Pol II complexes shown in the movie are restricted to either the front or side views used in earlier publications (Cramer et al., 2001Cramer P. Bushnell D.A. Kornberg R.D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.Science. 2001; 292: 1863-1876Crossref PubMed Scopus (966) Google Scholar) (Figure 2). See Movie S1 online to download for teaching purposes. The movie starts with the formation of the initiation-competent Pol II-TFIIF complex (Figures 1A and 2A). Binding of the 10 subunit Pol II core (Cramer et al., 2001Cramer P. Bushnell D.A. Kornberg R.D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.Science. 2001; 292: 1863-1876Crossref PubMed Scopus (966) Google Scholar) to the Pol II subcomplex Rpb4/7 (Armache et al., 2005Armache K.J. Mitterweger S. Meinhart A. Cramer P. Structures of complete RNA polymerase II and its subcomplex, Rpb4/7.J. Biol. Chem. 2005; 280: 7131-7134Crossref PubMed Scopus (176) Google Scholar) generates the complete, 12 subunit enzyme (Armache et al., 2003Armache K.J. Kettenberger H. Cramer P. Architecture of initiation-competent 12-subunit RNA polymerase II.Proc. Natl. Acad. Sci. USA. 2003; 100: 6964-6968Crossref PubMed Scopus (195) Google Scholar, Bushnell and Kornberg, 2003Bushnell D.A. Kornberg R.D. Complete, 12-subunit RNA polymerase II at 4.1-A resolution: implications for the initiation of transcription. Proc.Natl. Acad. Sci. USA. 2003; 100: 6969-6973Crossref PubMed Scopus (222) Google Scholar). Rpb4/7 binding stabilizes a closed conformation of the Pol II clamp domain, which only permits passage of single-stranded DNA to the active site (Armache et al., 2003Armache K.J. Kettenberger H. Cramer P. Architecture of initiation-competent 12-subunit RNA polymerase II.Proc. Natl. Acad. Sci. USA. 2003; 100: 6964-6968Crossref PubMed Scopus (195) Google Scholar). The complete Pol II is apparently relevant for initiation and elongation because Rpb4/7 is required for initiation in vitro (Edwards et al., 1991Edwards A.M. Kane C.M. Young R.A. Kornberg R.D. Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro.J. Biol. Chem. 1991; 266: 71-75Abstract Full Text PDF PubMed Google Scholar) and because the complete Pol II is associated with the genome in vivo (Jasiak et al., 2008Jasiak A.J. Hartmann H. Karakasili E. Kalocsay M. Flatley A. Kremmer E. Strässer K. Martin D.E. Söding J. Cramer P. Genome-associated RNA polymerase II includes the dissociable Rpb4/7 subcomplex.J. Biol. Chem. 2008; 283: 26423-26427Crossref PubMed Scopus (39) Google Scholar). Subsequent binding of TFIIF to Pol II generates the complete Pol II-TFIIF complex. We positioned the dimerization domain of TFIIF on the lobe domain of Pol II based on crosslinking data (Chen et al., 2010Chen Z.A. Jawhari A. Fischer L. Buchen C. Tahir S. Kamenski T. Rasmussen M. Lariviere L. Bukowski-Wills J.-C. Nilges M. et al.Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry.EMBO J. 2010; 29: 717-726Crossref PubMed Scopus (324) Google Scholar, Eichner et al., 2010Eichner J. Chen H.-T. Warfield L. Hahn S. Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex.EMBO J. 2010; 29: 706-716Crossref PubMed Scopus (76) Google Scholar). In the next stage of the movie, the Pol II-TFIIF complex binds the TBP-TFIIB-DNA complex, resulting in a minimal closed promoter complex, in accordance with the classic model for initiation complex formation (Buratowski et al., 1989Buratowski S. Hahn S. Guarente L. Sharp P.A. Five intermediate complexes in transcription initiation by RNA polymerase II.Cell. 1989; 56: 549-561Abstract Full Text PDF PubMed Scopus (680) Google Scholar) (Figures 1B and 2B). The closed complex model was derived by combining crystal structures of the Pol II-TFIIB complex (Kostrewa et al., 2009Kostrewa D. Zeller M.E. Armache K.-J. Seizl M. Leike K. Thomm M. Cramer P. RNA polymerase II-TFIIB structure and mechanism of transcription initiation.Nature. 2009; 462: 323-330Crossref PubMed Scopus (227) Google Scholar, Liu et al., 2010Liu X. Bushnell D.A. Wang D. Calero G. Kornberg R.D. Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism.Science. 2010; 327: 206-209Crossref PubMed Scopus (164) Google Scholar) and the TBP-TFIIB-DNA complex (Kosa et al., 1997Kosa P.F. Ghosh G. DeDecker B.S. Sigler P.B. The 2.1-A crystal structure of an archaeal preinitiation complex: TATA-box-binding protein/transcription factor (II)B core/TATA-box.Proc. Natl. Acad. Sci. USA. 1997; 94: 6042-6047Crossref PubMed Scopus (145) Google Scholar, Littlefield et al., 1999Littlefield O. Korkhin Y. Sigler P.B. The structural basis for the oriented assembly of a TBP/TFB/promoter complex.Proc. Natl. Acad. Sci. USA. 1999; 96: 13668-13673Crossref PubMed Scopus (134) Google Scholar, Nikolov et al., 1995Nikolov D.B. Chen H. Halay E.D. Usheva A.A. Hisatake K. Lee D.K. Roeder R.G. Burley S.K. Crystal structure of a TFIIB-TBP-TATA-element ternary complex.Nature. 1995; 377: 119-128Crossref PubMed Scopus (482) Google Scholar, Tsai and Sigler, 2000Tsai F.T. Sigler P.B. Structural basis of preinitiation complex assembly on human pol II promoters.EMBO J. 2000; 19: 25-36Crossref PubMed Scopus (141) Google Scholar). This model reveals the central role of TFIIB as a bridge between the promoter and the polymerase. Docking of the TBP-TFIIB-DNA complex onto the Pol II-TFIIF complex involves the binding of the TFIIB N-terminal ribbon domain to the Pol II dock domain and the binding of the C-terminal TFIIB core domain to the polymerase wall. The TFIIB reader and linker regions connect the N- and C-terminal domains of TFIIB and extend through the Pol II cleft (Figures 1B, 2B, and 2C). The minimal initiation complex in the movie corresponds to the essential transcription machinery in archaea (Qureshi et al., 1997Qureshi S.A. Bell S.D. Jackson S.P. Factor requirements for transcription in the Archaeon Sulfolobus shibatae.EMBO J. 1997; 16: 2927-2936Crossref PubMed Scopus (120) Google Scholar, Werner and Grohmann, 2011Werner F. Grohmann D. Evolution of multisubunit RNA polymerases in the three domains of l

Referência(s)