Obesity and diabetes as risk factors for coronary artery disease: from the epidemiological aspect to the initial vascular mechanisms

2004; Wiley; Volume: 7; Issue: 1 Linguagem: Inglês

10.1111/j.1463-1326.2004.00375.x

ISSN

1463-1326

Autores

Jari Sundell,

Tópico(s)

Cardiovascular Health and Disease Prevention

Resumo

Diabetes, Obesity and MetabolismVolume 7, Issue 1 p. 9-20 Obesity and diabetes as risk factors for coronary artery disease: from the epidemiological aspect to the initial vascular mechanisms J. Sundell, Corresponding Author J. Sundell Turku PET Centre and Department of Medicine, Turku University, Turku, Finland *Dr. Jan Sundell, Turku PET Centre, Turku University Central Hospital, PO Box 52, FIN-20521 Turku, Finland. E-mail:jan.sundell@utu.fiSearch for more papers by this author J. Sundell, Corresponding Author J. Sundell Turku PET Centre and Department of Medicine, Turku University, Turku, Finland *Dr. Jan Sundell, Turku PET Centre, Turku University Central Hospital, PO Box 52, FIN-20521 Turku, Finland. E-mail:jan.sundell@utu.fiSearch for more papers by this author First published: 10 November 2004 https://doi.org/10.1111/j.1463-1326.2004.00375.xCitations: 25Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Hopkins PN, Williams RR. A survey of 246 suggested coronary risk factors. Atherosclerosis 1981; 40: 1–52. 10.1016/0021-9150(81)90122-2 CASPubMedWeb of Science®Google Scholar 2 Eckel RH, Krauss RM. American Heart Association call to action: obesity as a major risk factor for coronary heart disease. AHA Nutrition Committee. Circulation 1998; 97: 2099–2100. 10.1161/01.CIR.97.21.2099 CASPubMedWeb of Science®Google Scholar 3 Skyler JS, Oddo C. Diabetes trends in the USA. Diabetes Metab Res Rev 2002; 18 (Suppl. 3): S21–S26. 10.1002/dmrr.289 PubMedWeb of Science®Google Scholar 4 Hensrud DD. Dietary treatment and long-term weight loss and maintenance in type 2 diabetes. Obes Res 2001; 9 (Suppl. 4): 348S–353S. 10.1038/oby.2001.141 PubMedWeb of Science®Google Scholar 5 Beck-Nielsen H, Henriksen JE, Alford F, Hother-Nielson O. In vivo glucose metabolism, insulin secretion and, insulin action in Europids with non-insulin-dependent diabetes mellitus (NIDDM) and their first-degree relatives. Diabet Med 1996; 13: S78–S84. 10.1002/dme.1996.13.s6.78 PubMedWeb of Science®Google Scholar 6 Howdle S, Wilkin T. Type 2 diabetes in children. Nurs Stand 2001; 15: 38–42. 10.7748/ns2001.01.15.18.38.c2970 PubMedGoogle Scholar 7 Vita JA, Treasure CB, Nabel EG et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 1990; 81: 491–497. 10.1161/01.CIR.81.2.491 CASPubMedWeb of Science®Google Scholar 8 Vita JA, Treasure CB, Yeung AC et al. Patients with evidence of coronary endothelial dysfunction as assessed by acetylcholine infusion demonstrate marked increase in sensitivity to constrictor effects of catecholamines. Circulation 1992; 85: 1390–1397. Google Scholar 9 Piatti PM, Monti LD, Galli L et al. Relationship between endothelin-1 concentration and metabolic alterations typical of the insulin resistance syndrome. Metabolism 2000; 49: 748–752. 10.1053/meta.2000.6257 CASPubMedWeb of Science®Google Scholar 10 Makimattila S, Virkamaki A, Groop PH et al. Chronic hyperglycemia impairs endothelial function and insulin sensitivity via different mechanisms in insulin-dependent diabetes mellitus. Circulation 1996; 94: 1276–1282. 10.1161/01.CIR.94.6.1276 CASPubMedWeb of Science®Google Scholar 11 Steinberg HO, Tarshoby M, Monestel R et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest 1997; 100: 1230–1239. 10.1172/JCI119636 CASPubMedWeb of Science®Google Scholar 12 Naidoo DP. The link between microalbuminuria, endothelial dysfunction and cardiovascular disease in diabetes. Cardiovasc J S Afr 2002; 13: 194–199. CASPubMedGoogle Scholar 13 Singhal A, Farooqi IS, Cole TJ et al. Influence of leptin on arterial distensibility: a novel link between obesity and cardiovascular disease? Circulation 2002; 106: 1919–1924. 10.1161/01.CIR.0000033219.24717.52 CASPubMedWeb of Science®Google Scholar 14 Sundell J, Huupponen R, Raitakari OT, Nuutila P, Knuuti J. High serum leptin is associated with attenuated coronary vasoreactivity. Obes Res 2003; 11: 776–782. 10.1038/oby.2003.108 CASPubMedWeb of Science®Google Scholar 15 Hansen A, Johansson BL, Wahren J, Von Bibra H. C-Peptide exerts beneficial effects on myocardial blood flow and function in patients with type 1 diabetes. Diabetes 2002; 51: 3077–3082. 10.2337/diabetes.51.10.3077 CASPubMedWeb of Science®Google Scholar 16 Johansson BL, Sundell J, Ekberg K et al. C-peptide improves adenosine-induced myocardial vasodilation in type 1 diabetes patients. Am J Physiol Endocrinol Metab 2004; 286: E14–E19. 10.1152/ajpendo.00236.2003 CASPubMedWeb of Science®Google Scholar 17 Casassus P, Fontbonne A, Thibult N et al. Upper-body fat distribution: a hyperinsulinemia-independent predictor of coronary heart disease mortality. The Paris Prospective Study. Arterioscler Thromb 1992; 12: 1387–1392. 10.1161/01.ATV.12.12.1387 CASPubMedWeb of Science®Google Scholar 18 Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 1983; 67: 968–977. 10.1161/01.CIR.67.5.968 CASPubMedWeb of Science®Google Scholar 19 Van Itallie TB. Health implications of overweight and obesity in the United States. Ann Intern Med 1985; 103: 983–988. 10.7326/0003-4819-103-6-983 CASPubMedWeb of Science®Google Scholar 20 WHO. Prevention and Management of the Global Epidemic of Obesity. Report of the. WHO, Consultation on Obesity (Geneva, June 3-5, 1997) 1997. Google Scholar 21 Bjorntorp P. Obesity. Lancet 1997; 350: 423–426. 10.1016/S0140-6736(97)04503-0 CASPubMedWeb of Science®Google Scholar 22 McGill HC Jr., McMahan CA, Herderick EE et al. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation 2002; 105: 2712–2718. 10.1161/01.CIR.0000018121.67607.CE PubMedWeb of Science®Google Scholar 23 Larsson B, Bengtsson C, Bjorntorp P et al. Is abdominal body fat distribution a major explanation for the sex difference in the incidence of myocardial infarction? The study of men born in 1913 and the study of women, Göteborg, Sweden. Am J Epidemiol 1992; 135: 266–273. 10.1093/oxfordjournals.aje.a116280 CASPubMedWeb of Science®Google Scholar 24 Katzel LI, Sorkin KD, Colman E et al. Risk factors for exercise-induced silent myocardial ischemia in healthy volunteers. Am J Cardiol 1994; 74: 869–874. 10.1016/0002-9149(94)90578-9 CASPubMedWeb of Science®Google Scholar 25 Lakka TA, Lakka HM, Salonen R, Kaplan GA, Salonen JT. Abdominal obesity is associated with accelerated progression of carotid atherosclerosis in men. Atherosclerosis 2001; 154: 497–504. 10.1016/S0021-9150(00)00514-1 CASPubMedWeb of Science®Google Scholar 26 Despres JP, Lamarche B, Mauriege P et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996; 334: 952–957. 10.1056/NEJM199604113341504 CASPubMedWeb of Science®Google Scholar 27 Fontbonne A, Charles MA, Thibult N et al. Hyperinsulinaemia as a predictor of coronary heart disease mortality in a healthy population: the Paris Prospective Study, 15-year follow-up. Diabetologia 1991; 34: 356–361. 10.1007/BF00405009 CASPubMedWeb of Science®Google Scholar 28 Pyorala M, Miettinen H, Laakso M, Pyorala K. Hyperinsulinemia predicts coronary heart disease risk in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen Study. Circulation 1998; 98: 398–404. 10.1161/01.CIR.98.5.398 CASPubMedWeb of Science®Google Scholar 29 Ciccone M, Vettor R, Pannacciulli N et al. Plasma leptin is independently associated with the intima-media thickness of the common carotid artery. Int J Obes Relat Metab Disord 2001; 25: 805–810. 10.1038/sj.ijo.0801623 CASPubMedWeb of Science®Google Scholar 30 Wallace AM, McMahon AD, Packard CJ et al. Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS). Circulation 2001; 104: 3052–3056. 10.1161/hc5001.101061 CASPubMedWeb of Science®Google Scholar 31 Stangl K, Cascorbi I, Laule M et al. Elevated serum leptin in patients with coronary artery disease: no association with the Trp64Arg polymorphism of the beta3-adrenergic receptor. Int J Obes Relat Metab Disord 2000; 24: 369–375. 10.1038/sj.ijo.0801159 CASPubMedWeb of Science®Google Scholar 32 Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA 1979; 241: 2035–2038. 10.1001/jama.1979.03290450033020 CASPubMedWeb of Science®Google Scholar 33 Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: The Framingham study. Circulation 1979; 59: 8–13. 10.1161/01.CIR.59.1.8 CASPubMedWeb of Science®Google Scholar 34 Pajunen P, Taskinen MR, Nieminen MS, Syvanne M. Angiographic severity and extent of coronary artery disease in patients with type 1 diabetes mellitus. Am J Cardiol 2000; 86: 1080–1085. 10.1016/S0002-9149(00)01163-2 CASPubMedWeb of Science®Google Scholar 35 Pyorala K, Laakso M, Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 1987; 3: 463–524. 10.1002/dmr.5610030206 CASPubMedWeb of Science®Google Scholar 36 D'Antonio JA, Ellis D, Doft BH et al. Diabetes complications and glycemic control. The Pittsburgh Prospective Insulin-Dependent Diabetes Cohort Study Status Report after 5 yr of IDDM. Diabetes Care 1989; 12: 670–694. 10.2337/diacare.12.10.694 CASWeb of Science®Google Scholar 37 Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. JAMA 1988; 260: 2864–2871. 10.1001/jama.1988.03410190112033 CASPubMedWeb of Science®Google Scholar 38 Wolffenbuttel BH, The DCCT: "metabolic control matters". Diabetes Control Complications Trial. Neth J Med 1993; 43: 241–245. CASPubMedWeb of Science®Google Scholar 39 Kuusisto J, Mykkanen L, Pyorala K, Laakso M. NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes 1994; 43: 960–967. 10.2337/diab.43.8.960 CASPubMedWeb of Science®Google Scholar 40 Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care 1995; 18: 258–268. 10.2337/diacare.18.2.258 CASPubMedWeb of Science®Google Scholar 41 Lehto S, Ronnemaa T, Pyorala K, Laakso M. Poor glycemic control predicts coronary heart disease events in patients with type 1 diabetes without nephropathy. Arterioscler Thromb Vasc Biol 1999; 19: 1014–1019. 10.1161/01.ATV.19.4.1014 CASPubMedWeb of Science®Google Scholar 42 Singer DE, Nathan DM, Anderson KM, Wilson PW, Evans JC. Association of HbA1c with prevalent cardiovascular disease in the original cohort of the Framingham Heart Study. Diabetes 1992; 41: 202–208. PubMedWeb of Science®Google Scholar 43 Yki-Jarvinen H. Management of type 2 diabetes mellitus and cardiovascular risk: lessons from intervention trials. Drugs 2000; 60: 975–983. 10.2165/00003495-200060050-00001 CASPubMedWeb of Science®Google Scholar 44 Morricone L, Donati C, Hassan T, Cioffi P, Caviezel F. Relationship of visceral fat distribution to angiographically assessed coronary artery disease: results in subjects with or without diabetes or impaired glucose tolerance. Nutr Metab Cardiovasc Dis 2002; 12: 275–283. CASPubMedWeb of Science®Google Scholar 45 Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15: 539–553. 10.1002/(SICI)1096-9136(199807)15:7 3.0.CO;2-S CASPubMedWeb of Science®Google Scholar 46 Qiao Q, Pyorala K, Pyorala M et al. Two-hour glucose is a better risk predictor for incident coronary heart disease and cardiovascular mortality than fasting glucose. Eur Heart J 2002; 23: 1267. 10.1053/euhj.2001.3113 CASPubMedWeb of Science®Google Scholar 47 Weis U, Turner B, Gibney J et al. Long-term predictors of coronary artery disease and mortality in type 1 diabetes. QJM 2001; 94: 623–630. 10.1093/qjmed/94.11.623 CASPubMedWeb of Science®Google Scholar 48 Soedamah-Muthu SS, Chaturvedi N, Toeller M et al. Risk factors for coronary heart disease in type 1 diabetic patients in Europe: the EURODIAB prospective complications study. Diabetes Care 2004; 27: 530–537. 10.2337/diacare.27.2.530 PubMedWeb of Science®Google Scholar 49 Hiller R, Sperduto RD, Podgor MJ, Ferris IIIFL, Wilson PW. Diabetic retinopathy and cardiovascular disease in type II diabetics. The Framingham Heart Study and the Framingham Eye Study. Am J Epidemiol 1988; 128: 402–409. 10.1093/oxfordjournals.aje.a114980 CASPubMedWeb of Science®Google Scholar 50 Rees DD, Palmer RM, Hodson HF, Moncada S. A specific inhibitor of nitric oxide formation from 1-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol 1989; 96: 418–424. 10.1111/j.1476-5381.1989.tb11833.x CASPubMedWeb of Science®Google Scholar 51 Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 1988; 333: 664–666. 10.1038/333664a0 CASPubMedWeb of Science®Google Scholar 52 Shimokawa H, Flavahan NA, Vanhoutte PM. Natural course of the impairment of endothelium-dependent relaxations after balloon endothelium removal in porcine coronary arteries. Possible dysfunction of a pertussis toxin-sensitive G protein. Circ Res 1989; 65: 740–753. 10.1161/01.RES.65.3.740 CASPubMedWeb of Science®Google Scholar 53 Cockcroft JR, Clarke JG, Webb DJ. The effect of intra-arterial endothelin on resting blood flow and sympathetically mediated vasoconstriction in the forearm of man. Br J Clin Pharmacol 1991; 31: 521–524. 10.1111/j.1365-2125.1991.tb05573.x CASPubMedWeb of Science®Google Scholar 54 Yang ZH, Richard V, Von Segesser L et al. Threshold concentrations of endothelin-1 potentiate contractions to norepinephrine and serotonin in human arteries. A new mechanism of vasospasm? Circulation 1990; 82: 188–195. 10.1161/01.CIR.82.1.188 CASPubMedWeb of Science®Google Scholar 55 Opie LH. The Heart, 3rd edn. Philadelphia, NY: Lippincott-Raven Publishers, 1998. Google Scholar 56 Quyyumi AA, Dakak N, Mulcahy D et al. Nitric oxide activity in the atherosclerotic human coronary circulation. J Am Coll Cardiol 1997; 29: 308–317. 10.1016/S0735-1097(96)00472-X CASPubMedWeb of Science®Google Scholar 57 Pitkanen OP, Raitakari OT, Ronnemaa T et al. Influence of cardiovascular risk status on coronary flow reserve in healthy young men. Am J Cardiol 1997; 79: 1690–1692. 10.1016/S0002-9149(97)00226-9 PubMedWeb of Science®Google Scholar 58 Ross R, Harker L. Hyperlipidemia and atherosclerosis. Science 1976; 193: 1094–1100. 10.1126/science.822515 CASPubMedWeb of Science®Google Scholar 59 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801–809. 10.1038/362801a0 CASPubMedWeb of Science®Google Scholar 60 Nag S. Cerebral endothelial mechanisms in increased permeability in chronic hypertension. Adv Exp Med Biol 1993; 331: 263–266. 10.1007/978-1-4615-2920-0_41 PubMedWeb of Science®Google Scholar 61 Nannipieri M, Rizzo L, Rapuano A, Pilo A, Penno G, Navalesi R. Increased transcapillary escape rate of albumin in microalbuminuric type II diabetic patients. Diabetes Care 1995; 18: 1–9. 10.2337/diacare.18.1.1 CASPubMedWeb of Science®Google Scholar 62 Jones CJ, DeFily DV, Patterson JL, Chilian WM. Endothelium-dependent relaxation competes with alpha 1- and alpha 2-adrenergic constriction in the canine epicardial coronary microcirculation. Circulation 1993; 87: 1264–1274. 10.1161/01.CIR.87.4.1264 CASPubMedWeb of Science®Google Scholar 63 Bhagat K, Vallance P. Inflammatory cytokines impair endothelium-dependent dilatation in human veins in vivo. Circulation 1997; 96: 3042–3047. 10.1161/01.CIR.96.9.3042 CASPubMedWeb of Science®Google Scholar 64 Haller H, Schaper D, Ziegler W et al. Low-density lipoprotein induces vascular adhesion molecule expression on human endothelial cells. Hypertension 1995; 25: 511–516. 10.1161/01.HYP.25.4.511 CASPubMedWeb of Science®Google Scholar 65 Sjolund M, Hedin U, Sejersen T, Heldin CH, Thyberg J. Arterial smooth muscle cells express platelet-derived growth factor (PDGF) A chain mRNA, secrete a PDGF-like mitogen, and bind exogenous PDGF in a phenotype- and growth state-dependent manner. J Cell Biol 1988; 106: 403–413. 10.1083/jcb.106.2.403 CASPubMedWeb of Science®Google Scholar 66 Libby P, Warner SJ, Salomon RN, Birinyi LK. Production of platelet-derived growth factor-like mitogen by smooth-muscle cells from human atheroma. N Engl J Med 1988; 318: 1493–1498. 10.1056/NEJM198806093182303 CASPubMedWeb of Science®Google Scholar 67 Al Suwaidi J, Higano ST, Holmes DR Jr, Lennon R, Lerman A. Obesity is independently associated with coronary endothelial dysfunction in patients with normal or mildly diseased coronary arteries. J Am Coll Cardiol 2001; 37: 1523–1528. 10.1016/S0735-1097(01)01212-8 CASPubMedWeb of Science®Google Scholar 68 Czernin J, Barnard RJ, Sun KT et al. Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Circulation 1995; 92: 197–204. 10.1161/01.CIR.92.2.197 CASPubMedWeb of Science®Google Scholar 69 Sundell J, Laine H, Luotolahti M et al. Obesity affects myocardial vasoreactivity and coronary flow response to insulin. Obes Res 2002; 10: 617–624. 10.1038/oby.2002.84 CASPubMedWeb of Science®Google Scholar 70 Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 1996; 97: 2601–2610. 10.1172/JCI118709 CASPubMedWeb of Science®Google Scholar 71 Madar Z, Zierath J, Nolte L, Thorne A, Voet H, Wallberg-Henriksson H. Human skeletal muscle nitric oxide synthase – characterization of its activity in obese subjects. Diabetes 1997; 46: 24A. Google Scholar 72 Heilbronn LK, Noakes M, Clifton PM. Energy restriction and weight loss on very-low-fat diets reduce C-reactive protein concentrations in obese, healthy women. Arterioscler Thromb Vasc Biol 2001; 21: 968–970. 10.1161/01.ATV.21.6.968 CASPubMedWeb of Science®Google Scholar 73 Ziccardi P, Nappo F, Giugliano G et al. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation 2002; 105: 804–809. 10.1161/hc0702.104279 CASPubMedWeb of Science®Google Scholar 74 Ferrannini E, Natali A, Bell P, Cavallo-Perin P, Lalic N, Mingrone G. Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J Clin Invest 1997; 100: 1166–1173. 10.1172/JCI119628 CASPubMedWeb of Science®Google Scholar 75 Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. European Group for Study Insulin Resistance (EGIR). Diabet Med 1999; 16: 442–443. 10.1046/j.1464-5491.1999.00059.x CASPubMedWeb of Science®Google Scholar 76 Cusi K, Maezono K, Osman A et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000; 105: 311–320. 10.1172/JCI7535 CASPubMedWeb of Science®Google Scholar 77 Mather K, Anderson TJ, Verma S. Insulin action in the vasculature: physiology and pathophysiology. J Vasc Res 2001; 38: 415–422. 10.1159/000051074 CASPubMedWeb of Science®Google Scholar 78 Scherrer U. Insulin and the regulation of cardiovascular system: role of the l-arginine nitric oxide pathway and the sympathetic nervous system. In: TE Lüscher, ed. The Endothelium in Cardiovascular Disease. Heidelberg: Springer Verlag, 1995, 108–128. 10.1007/978-3-642-79803-0_10 Google Scholar 79 Sobrevia L, Nadal A, Yudilevich DL, Mann GE. Activation of l-arginine transport (system y+) and nitric oxide synthase by elevated glucose and insulin in human endothelial cells. J Physiol 1996; 490 (3): 775–781. 10.1113/jphysiol.1996.sp021185 CASPubMedWeb of Science®Google Scholar 80 Perfetto F, Tarquini R, Tapparini L, Tarquini B. Influence of non-insulin-dependent diabetes mellitus on plasma endothelin-1 levels in patients with advanced atherosclerosis. J Diabetes Complications 1998; 12: 187–192. 10.1016/S1056-8727(97)00092-5 CASPubMedWeb of Science®Google Scholar 81 Metsarinne K, Saijonmaa O, Yki-Jarvinen H, Fyhrquist F. Insulin increases the release of endothelin in endothelial cell cultures in vitro but not in vivo. Metabolism 1994; 43: 878–882. 10.1016/0026-0495(94)90270-4 CASPubMedWeb of Science®Google Scholar 82 Leyva F, Wingrove C, Felton C, Stevenson JC. Physiological hyperinsulinemia is not associated with alterations in venous plasma levels of endothelin-1 in healthy individuals. Metabolism 1997; 46: 1137–1139. 10.1016/S0026-0495(97)90205-5 PubMedWeb of Science®Google Scholar 83 Bierman EL, George Lyman Duff Memorial Lecture. Atherogenesis in diabetes. Arterioscler Thromb 1992; 12: 647–656. 10.1161/01.ATV.12.6.647 CASPubMedWeb of Science®Google Scholar 84 Lembo G, Napoli R, Capaldo B et al. Abnormal sympathetic overactivity evoked by insulin in the skeletal muscle of patients with essential hypertension. J Clin Invest 1992; 90: 24–29. 10.1172/JCI115842 CASPubMedWeb of Science®Google Scholar 85 Sundell J, Nuutila P, Laine H et al. Dose-dependent vasodilating effects of insulin on adenosine-stimulated myocardial blood flow. Diabetes 2002; 51: 1125–1130. 10.2337/diabetes.51.4.1125 CASPubMedWeb of Science®Google Scholar 86 Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985; 5: 293–302. 10.1161/01.ATV.5.3.293 CASPubMedWeb of Science®Google Scholar 87 Grassi G, Seravalle G, Cattaneo BM et al. Sympathetic activation in obese normotensive subjects. Hypertension 1995; 25: 560–563. 10.1161/01.HYP.25.4.560 CASPubMedWeb of Science®Google Scholar 88 Landsberg L, Krieger DR. Obesity, metabolism, and the sympathetic nervous system. Am J Hypertens 1989; 2: 125S–132S. CASPubMedWeb of Science®Google Scholar 89 Vaz M, Jennings G, Turner A, Cox H, Lambert G, Esler M. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation 1997; 96: 3423–3429. 10.1161/01.CIR.96.10.3423 CASPubMedWeb of Science®Google Scholar 90 Rumantir MS, Vaz M, Jennings GL et al. Neural mechanisms in human obesity-related hypertension. J Hypertens 1999; 17: 1125–1133. 10.1097/00004872-199917080-00012 CASPubMedWeb of Science®Google Scholar 91 Young JB, Macdonald IA. Sympathoadrenal activity in human obesity: heterogeneity of findings since 1980. Int J Obes Relat Metab Disord 1992; 16: 959–967. CASPubMedWeb of Science®Google Scholar 92 Tanida M, Iwashita S, Ootsuka Y, Terui N, Suzuki M. Leptin injection into white adipose tissue elevates renal sympathetic nerve activity dose-dependently through the afferent nerves pathway in rats. Neurosci Lett 2000; 293: 107–110. 10.1016/S0304-3940(00)01490-7 CASPubMedWeb of Science®Google Scholar 93 Rahmouni K, Haynes WG, Mark AL. Cardiovascular and sympathetic effects of leptin. Curr Hypertens Rep 2002; 4: 119–125. 10.1007/s11906-002-0036-z PubMedWeb of Science®Google Scholar 94 Vecchione C, Maffei A, Colella S et al. Leptin effect on endothelial nitric oxide is mediated through Akt-endothelial nitric oxide synthase phosphorylation pathway. Diabetes 2002; 51: 168–173. 10.2337/diabetes.51.1.168 CASPubMedWeb of Science®Google Scholar 95 Fruhbeck G. Pivotal role of nitric oxide in the control of blood pressure after leptin administration. Diabetes 1999; 48: 903–908. 10.2337/diabetes.48.4.903 CASPubMedWeb of Science®Google Scholar 96 Kimura K, Tsuda K, Baba A et al. Involvement of nitric oxide in endothelium-dependent arterial relaxation by leptin. Biochem Biophys Res Commun 2000; 273: 745–749. 10.1006/bbrc.2000.3005 CASPubMedWeb of Science®Google Scholar 97 Quehenberger P, Exner M, Sunder-Plassmann R et al. Leptin induces endothelin-1 in endothelial cells in vitro. Circ Res 2002; 90: 711–718. 10.1161/01.RES.0000014226.74709.90 CASPubMedWeb of Science®Google Scholar 98 Kuo JJ, Jones OB, Hall JE. Inhibition of NO synthesis enhances chronic cardiovascular and renal actions of leptin. Hypertension 2001; 37: 670–676. 10.1161/01.HYP.37.2.670 CASPubMedWeb of Science®Google Scholar 99 Konstantinides S, Schafer K, Loskutoff DJ. The prothrombotic effects of leptin possible implications for the risk of cardiovascular disease in obesity. Ann N Y Acad Sci 2001; 947: 134–141. 10.1111/j.1749-6632.2001.tb03936.x CASPubMedWeb of Science®Google Scholar 100 Pitkanen OP, Nuutila P, Raitakari OT et al. Coronary flow reserve is reduced in young men with IDDM. Diabetes 1998; 47: 248–254. 10.2337/diab.47.2.248 CASPubMedWeb of Science®Google Scholar 101 Di Carli MF, Bianco-Batlles D, Landa ME et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999; 100: 813–819. 10.1161/01.CIR.100.8.813 CASPubMedWeb of Science®Google Scholar 102 Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali JR. Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 1993; 42: 1017–1025. PubMedWeb of Science®Google Scholar 103 Nahser PJ Jr, Brown RE, Oskarsson H, Winniford MD, Rossen JD. Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation 1995; 91: 635–640. 10.1161/01.CIR.91.3.635 PubMedWeb of Science®Google Scholar 104 Sundell J, Laine H, Nuutila P et al. The effects of insulin and short-term hyperglycemia on myocardial blood flow in young men with uncomplicated Type I diabetes. Diabetologia 2002; 45: 775–782. 10.1007/s00125-002-0819-4 CASPubMedWeb of Science®Google Scholar 105 Waltenberger J, Lange J, Kranz A. Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus. A potential predictor for the individual capacity to develop collaterals. Circulation 2000; 102: 185–190. 10.1161/01.CIR.102.2.185 CASPubMedWeb of Science®Google Scholar 106 Yokoyama I, Ohtake T, Momomura S et al. Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes 1998; 47: 119–124. CASPubMedWeb of Science®Google Scholar 107 Ido Y, Chang KC, Lejeune WS et al. Vascular dysfunction induced by AGE is mediated by VEGF via mechanisms involving reactive oxygen species, guanylate cyclase, and protein kinase C. Microcirculation 2001; 8: 251–263. 10.1111/j.1549-8719.2001.tb00174.x CASPubMedWeb of Science®Google Scholar 108 Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 1991; 87: 432–438. 10.1172/JCI115014 CASPubMedWeb of Science®Google Scholar 109 Verbeke P, Perichon M, Friguet B, Bakala H. Inhibition of nitric oxide synthase activity by early and advanced glycation end products in cultured rabbit proximal tubular epithelial cells. Biochim Biophys Acta 2000; 1502: 481–494. 10.1016/S0925-4439(00)00071-5 CASPubMedWeb of Science®Google Scholar 110 Iino K, Yoshinari M, Yamamoto M et al. Effect of glycated collagen on proliferation of human smooth muscle cells in vitro. Diabetologia 1996; 39: 800–806. 10.1007/s001250050513 CASPubMedWeb of Science®Google Scholar 111 Witztum JL, Mahoney EM, Branks MJ, Fisher M, Elam R, Steinberg D. Nonenzymatic glucosylation of low-density lipoprotein alters its biologic activity. Diabetes 1982; 31: 283–291. CASPubMedWeb of Science®Google Scholar 112 Lopes-Virella MF, Klein RL, Lyons TJ, Stevenson HC, Witztum JL. Glycosylation of low-density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages. Diabetes 1988; 37: 550–557. 10.2337/diabetes.37.5.550 CASPubMedWeb of Science®Google Scholar 113 Duell PB, Oram JF, Bierman EL. Nonenzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux. Diabetes 1991; 40: 377–384. 10.2337/diab.40.3.377 CASPubMedWeb of Science®Google Scholar 114 Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989; 320: 915–924. 10.1056/NEJM198901053200122 CASPubMedWeb of Science®Google Scholar 115 Morel DW, Chisolm GM. Antioxidant treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity. J Lipid Res 1989; 30: 1827–1834. 10.1016/S0022-2275(20)38196-7 CASPubMedWeb of Science®Google Scholar 116 De Vriese AS, Van Verbeuren TJ, Van de Voorde V, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol 2000; 130: 963–974. 10.1038/sj.bjp.0703393 CASPubMedWeb of Science®Google Scholar 117 Uemura S, Matsushita H, Li W et al. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res 2001; 88: 1291–1298. 10.1161/hh1201.092042 CASPubMedWeb of Science®Google Scholar 118 Barrett EJ, Schwartz RG, Francis CK, Zaret BL. Regulation by insulin of myocardial glucose and fatty acid metabolism in the conscious dog. J Clin Invest 1984; 74: 1073–1079. 10.1172/JCI111474 CASPubMedWeb of Science®Google Scholar 119 Kersten JR, Brooks LA, Dellsperger KC. Impaired microvascular response to graded coronary occlusion in diabetic and hyperglycemic dogs. Am J Physiol 1995; 268: H1667–H1674. CASPubMedWeb of Science®Google Scholar 120 Lickerman A, Grover-McKay M, Dellsperger KC. Hyperglycemia-induced angina pectoris in a patient with diabetes mellitus. Clin Cardiol 1997; 20: 736–737. 10.1002/clc.4960200814 PubMedWeb of Science®Google Scholar 121 Groop PH, Elliott T, Ekstrand A et al. Multiple lipoprotein abnormalities in type I diabetic patients with renal disease. Diabetes 1996; 45: 974–979. 10.2337/diabetes.45.7.974 PubMedWeb of Science®Google Scholar 122 Griendling KK, Alexander RW. Oxidative stress and cardiovascular disease. Circulation 1997; 96: 3264–3265. CASPubMedWeb of Science®Google Scholar 123 Diaz MN, Frei B, Vita JA, Keaney JF Jr. Antioxidants and atherosclerotic heart disease. N Engl J Med 1997; 337: 408–416. 10.1056/NEJM199708073370607 CASPubMedWeb of Science®Google Scholar 124 Gaenzer H, Neumayr G, Marschang P et al. Effect of Insulin Therapy on Endothelium-Dependent dilation in type 2 diabetes mellitus. Am J Cardiol 2002; 89: 431–434. 10.1016/S0002-9149(01)02266-4 CASPubMedWeb of Science®Google Scholar 125 Diaz R, Paolasso EA, Piegas LS et al. Metabolic modulation of acute myocardial infarction. The ECLA (Estudios Cardiologicos Latinoamerica) Collaborative Group. Circulation 1998, 98: 2227–2234. 10.1161/01.CIR.98.21.2227 CASPubMedWeb of Science®Google Scholar 126 Fath-Ordoubadi F, Beatt KJ. Glucose-insulin-potassium therapy for treatment of acute myocardial infarction: an overview of randomized placebo-controlled trials. Circulation 1997; 96: 1152–1156. 10.1161/01.CIR.96.4.1152 CASPubMedWeb of Science®Google Scholar 127 Malmberg K, Norhammar A, Wedel H, Ryden L. Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) study. Circulation 1999; 99: 2626–2632. 10.1161/01.CIR.99.20.2626 CASPubMedWeb of Science®Google Scholar 128 Marano L, Bestetti A, Lomuscio A et al. Effects of infusion of glucose-insulin-potassium on myocardial function after a recent myocardial infarction. Acta Cardiol 2000; 55: 9–15. 10.2143/AC.55.1.2005712 PubMedWeb of Science®Google Scholar 129 Apstein CS, Deckelbaum L, Mueller M, Hagopian L, Hood WB Jr. Graded global ischemia and reperfusion. Cardiac function and lactate metabolism. Circulation 1977; 55: 864–872. 10.1161/01.CIR.55.6.864 CASPubMedWeb of Science®Google Scholar 130 Johansson BL, Kernell A, Sjoberg S, Wahren J. Influence of combined C-peptide and insulin administration on renal function and metabolic control in diabetes type 1. J Clin Endocrinol Metab 1993; 77: 976–981. 10.1210/jc.77.4.976 CASPubMedWeb of Science®Google Scholar 131 Johansson BL, Borg K, Fernqvist-Forbes E, Kernell A, Odergren T, Wahren J. Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with Type 1 diabetes mellitus. Diabet Med 2000; 17: 181–189. 10.1046/j.1464-5491.2000.00274.x CASPubMedWeb of Science®Google Scholar 132 Johansson BL, Pernow J. C-peptide potentiates the vasoconstrictor effect of neuropeptide Y in insulin-dependent diabetic patients. Acta Physiol Scand 1999; 165: 39–44. 10.1046/j.1365-201x.1999.00475.x CASPubMedWeb of Science®Google Scholar 133 Johansson BL, Linde B, Wahren J. Effects of C-peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm of type 1 (insulin-dependent) diabetic patients. Diabetologia 1992; 35: 1151–1158. 10.1007/BF00401369 CASPubMedWeb of Science®Google Scholar 134 Forst T, Kunt T, Pohlmann T et al. Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus. J Clin Invest 1998; 101: 2036–2041. 10.1172/JCI2147 CASPubMedWeb of Science®Google Scholar 135 Johansson BL, Sjoberg S, Wahren J. The influence of human C-peptide on renal function and glucose utilization in type 1 (insulin-dependent) diabetic patients. Diabetologia 1992; 35: 121–128. 10.1007/BF00402543 CASPubMedWeb of Science®Google Scholar 136 Wahren J, Ekberg K, Johansson J et al. Role of C-peptide in human physiology. Am J Physiol Endocrinol Metab 2000; 278: E759–E768. 10.1152/ajpendo.2000.278.5.E759 CASPubMedWeb of Science®Google Scholar Citing Literature Volume7, Issue1January 2005Pages 9-20 ReferencesRelatedInformation

Referência(s)