Revisão Revisado por pares

Action Potential Duration Modulates Calcium Influx, Na + ‐Ca 2+ Exchange, and Intracellular Calcium Release in Rat Ventricular Myocytes a

1996; Wiley; Volume: 779; Issue: 1 Linguagem: Inglês

10.1111/j.1749-6632.1996.tb44817.x

ISSN

1749-6632

Autores

Robert B. Clark, Ron A. Bouchard, Wayne R. Giles,

Tópico(s)

Neuroscience and Neural Engineering

Resumo

Annals of the New York Academy of SciencesVolume 779, Issue 1 p. 417-429 Full Access Action Potential Duration Modulates Calcium Influx, Na+-Ca2+ Exchange, and Intracellular Calcium Release in Rat Ventricular Myocytesa R. B. CLARK, R. B. CLARK Departments of Medical Physiology and Medicine University of Calgary 3330 Hospital Drive N. W. Calgary, Alberta, Canada T2N 4N1Search for more papers by this authorR. A. BOUCHARD, R. A. BOUCHARD Departments of Medical Physiology and Medicine University of Calgary 3330 Hospital Drive N. W. Calgary, Alberta, Canada T2N 4N1Search for more papers by this authorW. R. GILES, Corresponding Author W. R. GILES Departments of Medical Physiology and Medicine University of Calgary 3330 Hospital Drive N. W. Calgary, Alberta, Canada T2N 4N1To whom correspondence should be addressed.Search for more papers by this author R. B. CLARK, R. B. CLARK Departments of Medical Physiology and Medicine University of Calgary 3330 Hospital Drive N. W. Calgary, Alberta, Canada T2N 4N1Search for more papers by this authorR. A. BOUCHARD, R. A. BOUCHARD Departments of Medical Physiology and Medicine University of Calgary 3330 Hospital Drive N. W. Calgary, Alberta, Canada T2N 4N1Search for more papers by this authorW. R. GILES, Corresponding Author W. R. GILES Departments of Medical Physiology and Medicine University of Calgary 3330 Hospital Drive N. W. Calgary, Alberta, Canada T2N 4N1To whom correspondence should be addressed.Search for more papers by this author First published: April 1996 https://doi.org/10.1111/j.1749-6632.1996.tb44817.xCitations: 42 This work was supported by the Medical Research Council of Canada, the Heart and Stroke Foundation of Canada, and the Alberta Heritage Foundation for Medical Research. W.R.G. is an Alberta Heritage Foundation Medical Scientist. R.A.B. was the recipient of a Medical Research Council Postdoctoral Fellowship. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Reference 1 Wood, E. H., R. Heppner & S. Weidmann. 1969. Inotropic effects of electric currents. Cir. Res. 24: 409–445. 2 Morad, M. & Y. Goldman. 1973. Excitation-contraction coupling in heart muscle: membrane control of development of tension. Prog. Biophys. Mol. Biol. 27: 257–313. 3 Allen, D. G. 1977. On the relationship between action potential duration and tension in cat papillary muscle. Cardiovasc. Res. 11: 210–218. 4 Wohlfart, B. 1979. Relationship between peak force, action potential duration and stimulus interval in rabbit myocardium. Acta Physiol. Scand. 106: 395–409. 5 Schouten, V. J. A. 1986. The negative correlation between action potential duration and force of contraction during restitution in rat myocardium. J. Mol. Cell. Cardiol. 18: 1033–1045. 6 Boyett, M. R. & B. Jewell. 1980. Analysis of the effects of changes in rate and rhythm upon electrical activity in the heart. Prog. Biophys. Mol. Biol. 36: 1–52. 7 Bouchard, R. A., R. B. Clark & W. R. Giles. 1995. Effects of action potential duration on excitation-contraction coupling in rat ventricular myocytes. Circ. Res. 76: 790–801. 8 Clark, R. B., R. A. Bouchard, E. Sanchez-Chapula, E. Salinas-Stephanon & W. R. Giles. 1993. Heterogeneity of action potential waveforms and repolarizing potassium currents in rat ventricle. Cardiovasc. Res. 27: 1795–1799. 9 Fedida, D., A. P. Braun & W. R. Giles. 1993. α1-Adrenoceptors in myocardium: functional aspects and transmembrane signaling mechanisms. Physiol. Rev. 73: 469–487. 10 Xiao, R. & E. G. Lakatta. 1993. β1-Adrenoceptor stimulation and β2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ. Res. 73: 286–300. 11 Morad, M. & L. Cleeman. 1987. Role of Ca2+ channel in development of tension in heart muscle. J. Mol. Cell. Cardiol. 27: 257–313. 12 Cleeman, L. & M. Morad. 1991. Role of Ca2+ channel in cardiac excitation-contraction coupling in the rat: evidence from Ca2+ transients and contraction. J. Physiol. 432: 283–312. 13 Sham, J. S. K., L. Cleemann & M. Morad. 1995. Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes. Proc. Natl. Acad. Sci. USA 92: 121–125. 14 London, B. & J. W. Krueger. 1986. Contraction in voltage-clamped internally perfused single heart cells. J. Gen. Physiol. 88: 475–505. 15 Bouchard, R. A., R. B. Clark & W. R. Giles. 1993. Regulation of unloaded cell shortening in isolated rat ventricular myocytes by sarcolemmal Na+/Ca2+ exchange. J. Physiol. 469: 583–599. 16 Bers, D. M., W. J. Lederer & J. Berlin. 1991. Intracellular Ca transients in rat cardiac myocytes: role of Na-Ca exchange in excitation-contraction coupling. Am. J. Physiol. 258: C944–C954. 17 Fabiato, A. 1985. Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85: 291–320. 18 Wier, W. G. 1990. Dynamics of control of cytosolic calcium ion concentration. Ann. Rev. Physiol. 52: 467–485. 19 Doerr, T., R. Denger, A. Doerr & W. Trautwein. 1990. Ionic currents contributing to the action potential in single ventricular myocytes of the guinea-pig studied with action potential clamp. Pflug. Arch. 413: 599–603. 20 Arreola, J., R. T. Dirksen, R-C. Shieh, D. J. Williford & S-S. Sheu. 1991. Ca2+ current and Ca2+ transients under action potential clamp in guinea-pig ventricular myocytes. Am. J. Physiol. 261: C393–C397. 21 Minta, A., J. P. Y. Kao & R. Y. Tsien. 1989. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem. 264: 8171–8178. 22 Bouchard, R. A., R. B. Clark & W. R. Giles. 1993. Role of Na+/Ca2+ exchange in activation of contraction in rat ventricle. J. Physiol. 472: 391–413. 23 Shimoni, Y., R. B. Clark & W. R. Giles. 1992. Role of an inwardly rectifying K+ current in the rabbit ventricular action potential. J. Physiol. 448: 709–727. 24 Page, E. 1978. Quantitative ultrastructural analysis in cardiac membrane physiology. Am. J. Physiol. 235: C147–C158. 25 Noble, D., S. J. Noble, C. L. Berr, Y. E. Earm, W. K. Ho & I. K. So. 1991. The role of sodium-calcium exchange during the cardiac action potential. Ann. N. Y. Acad. Sci. 639: 334–354. 26 Campbell, D. L., W. R. Giles, K. Robinson & E. F. Shibata. 1988. Studies of the sodium-calcium exchanger in bull-frog atrial myocytes. J. Physiol. 403: 317–340. 27 Bridge, J. H. B., J. Smolley & K. Spitzer. 1990. The relationship between charge movements associated with ICa and INaCa in cardiac myocytes. Science 248: 376–378. 28 Hilgemann, D. 1990. "Best estimates" of physiological Na/Ca exchange function: calcium conservation and the cardiac electrical cycle. In Cardiac Electrophysiology: from Cell to Bedside. D. P. Zipes & J. Jalife, Eds. 51–61. W. B. Saunders Co. Philadelphia . 29 Eisner, D. & W. J. Lederer. 1985. Na-Ca exchange: stoichiometry and electrogenicity. Am. J. Physiol. 248: C189–C202. 30 Fabiato, A. 1985. Time and calcium dependence of activation and inactivation of calcium induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85: 247–289. 31 Monck, J. R., I. M. Robinson, A. L. Escobar, J. L. Vergara & J. M. Fernandez. 1994. Pulsed laser imaging of rapid Ca2+ gradients in excitable cells. Biophys. J. 67: 505–514. 32 Rios, E. & G. Pizarro. 1991. Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol. Rev. 71(3): 849–908. 33 Isenberg, G. & U. Klockner. 1982. Calcium currents of isolated bovine ventricular myocytes are fast and of large amplitude. Pflueg. Arch. 395: 30–41. 34 Valdiomillos, M., S. C. O'Neill, G. L. Smith & D. A. Eisner. 1989. Calcium-induced calcium release activates contraction in intact cardiac cells. Pflueg. Arch. 413: 676–678. 35 Bers, D. M., W. J. Lederer & J. R. Berlin. 1990. Intracellular Ca transients in rat cardiac myocytes: role of Na-Ca exchange in excitation-contraction coupling. Am. J. Physiol. 258: C944–C954. 36 Nabauer, M., G. Callewaert, L. Cleeman & M. Morad. 1989. Regulation of calcium release is regulated by calcium, not gating charge, in cardiac myocytes. Science 244: 800–803. 37 Cleemann, L. & M. Morad. 1991. Role of Ca2+ channel in cardiac excitation-contraction coupling in the rat: evidence from Ca2+ transients and contractions. J. Physiol. 432: 283–312. 38 Wier, W. G., T. M. Egan, J. R. Lopez-Lopez & C. W. Balke. 1994. Local control of excitation-contraction coupling in rat heart cells. J. Physiol. (London) 474: 463–471. 39 Stern, M. D. 1992. Theory of excitation-contraction coupling in cardiac muscle. Biophys. J. 63: 497–517. 40 Stern, M. D. & E. G. Lakatta. 1992. Excitation-contraction coupling in the heart: the state of the question. FASEB J. 6: 3092–3100. 41 Lopez-Lopez, J. R., P. S. Shacklock, C. W. Balke & W. G. Wier. 1995. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268: 1042–1045. 42 Cannell, M. B., H. Cheng & W. J. Lederer. 1995. The control of calcium release in heart muscle. Science 268: 1045–1049. 43 Janczewski, A. M., H. A. Spurgeon, M. D. Stern & E. G. Lakatta. 1995. Effects of sarcoplasmic reticulum Ca2+ load on the gain function of Ca2+ release by Ca2+ current in cardiac cells. Am. J. Physiol. 268: H916–H920. 44 Bassani, J. W. M., W. Yuan & D. M. Bers. 1995. Fractional SR Ca2+ release is regulated by trigger Ca2+ and SR Ca2+ content in cardiac myocytes. Am. J. Physiol. 268: C1313–C1329. 45 Sipido, K. R., G. Callewaert & E. Carmeliet. 1995. Inhibition and rapid recovery of Ca2+ current during Ca2+ release from sarcoplasmic reticulum in guinea pig ventricular myocytes. Circ. Res. 76: 102–109. 46 Valdivia, H. H., J. H. Kaplan, G. C. R. Ellis-Davies & W. J. Lederer. 1995. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science 267: 1997–2000. 47 Lamb, G. D. & D. G. Stephenson. 1995. Activation of ryanodine receptors by flash photolysis of caged Ca2+. Biophys. J. 68: 946–948. 48 Niggli, E. & P. Lipp. 1995. Subcellular features of calcium signalling in heart muscle: what do we learn? Cardiovasc. Res. 29: 441–448. 49 Santana, L. F., H. Cheng, A. M. Gomez, M. B. Cannell & W. J. Lederer. 1996. Relation between the sarcolemmal Ca2+ current and Ca2+ sparks and local control theories for cardiac excitation-contraction coupling. Circ. Res. 78: 166–171. 50 Shacklock, P. S., W. G. Wier & C. W. Balke. 1995. Local Ca2+ transients (Ca2+ sparks) originate at transverse tubules in rat heart cells. J. Physiol. 487: 601–608. 51 Trafford, A. W., M. E. Diaz, S. C. O'Neill & D. A. Eisner. 1995. Comparison of subsarcolemmal and bulk calcium concentration during spontaneous calcium release in rat ventricular myocytes. J. Physiol. 488: 577–587. Citing Literature Volume779, Issue1Sodium–Calcium Exchange: Proceedings of the Third International ConferenceApril 1996Pages 417-429 ReferencesRelatedInformation

Referência(s)