Revisão Revisado por pares

In vitro cytochrome P450 inhibition data and the prediction of drug-drug interactions: Qualitative relationships, quantitative predictions, and the rank-order approach

2005; Wiley; Volume: 78; Issue: 6 Linguagem: Inglês

10.1016/j.clpt.2005.09.004

ISSN

1532-6535

Autores

R. Scott Obach, Robert L. Walsky, Karthik Venkatakrishnan, J. Brian Houston, Larry M. Tremaine,

Tópico(s)

Analytical Chemistry and Chromatography

Resumo

Clinical Pharmacology & TherapeuticsVolume 78, Issue 6 p. 582-592 Commentary In vitro cytochrome P450 inhibition data and the prediction of drug-drug interactions: Qualitative relationships, quantitative predictions, and the rank-order approach R. Scott Obach PhD, Corresponding Author R. Scott Obach PhD Departments of Pharmacokinetics, Dynamics, and Drug Metabolism and Clinical Pharmacokinetics and Pharmacodynamics, Pfizer, Groton, Conn School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United KingdomPfizer Global Research and Development, Groton Laboratories, MS4088, Groton, CT 06340 E-mail: [email protected]Search for more papers by this authorRobert L. Walsky BSc, Robert L. Walsky BSc Departments of Pharmacokinetics, Dynamics, and Drug Metabolism and Clinical Pharmacokinetics and Pharmacodynamics, Pfizer, Groton, Conn School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United KingdomSearch for more papers by this authorKarthik Venkatakrishnan PhD, Karthik Venkatakrishnan PhD Departments of Pharmacokinetics, Dynamics, and Drug Metabolism and Clinical Pharmacokinetics and Pharmacodynamics, Pfizer, Groton, Conn School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United KingdomSearch for more papers by this authorJ. Brian Houston PhD, J. Brian Houston PhD Departments of Pharmacokinetics, Dynamics, and Drug Metabolism and Clinical Pharmacokinetics and Pharmacodynamics, Pfizer, Groton, Conn School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United KingdomSearch for more papers by this authorLarry M. Tremaine PhD, Larry M. Tremaine PhD Departments of Pharmacokinetics, Dynamics, and Drug Metabolism and Clinical Pharmacokinetics and Pharmacodynamics, Pfizer, Groton, Conn School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United KingdomSearch for more papers by this author R. Scott Obach PhD, Corresponding Author R. Scott Obach PhD Departments of Pharmacokinetics, Dynamics, and Drug Metabolism and Clinical Pharmacokinetics and Pharmacodynamics, Pfizer, Groton, Conn School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United KingdomPfizer Global Research and Development, Groton Laboratories, MS4088, Groton, CT 06340 E-mail: [email protected]Search for more papers by this authorRobert L. Walsky BSc, Robert L. Walsky BSc Departments of Pharmacokinetics, Dynamics, and Drug Metabolism and Clinical Pharmacokinetics and Pharmacodynamics, Pfizer, Groton, Conn School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United KingdomSearch for more papers by this authorKarthik Venkatakrishnan PhD, Karthik Venkatakrishnan PhD Departments of Pharmacokinetics, Dynamics, and Drug Metabolism and Clinical Pharmacokinetics and Pharmacodynamics, Pfizer, Groton, Conn School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United KingdomSearch for more papers by this authorJ. Brian Houston PhD, J. Brian Houston PhD Departments of Pharmacokinetics, Dynamics, and Drug Metabolism and Clinical Pharmacokinetics and Pharmacodynamics, Pfizer, Groton, Conn School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United KingdomSearch for more papers by this authorLarry M. Tremaine PhD, Larry M. Tremaine PhD Departments of Pharmacokinetics, Dynamics, and Drug Metabolism and Clinical Pharmacokinetics and Pharmacodynamics, Pfizer, Groton, Conn School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United KingdomSearch for more papers by this author First published: 07 December 2005 https://doi.org/10.1016/j.clpt.2005.09.004Citations: 29Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Appendix References 1Yao, C. and Levy, R. H. (2002). Inhibition-based metabolic drug-drug interactions: predictions from in vitro data. J Pharm Sci 91: 1923–1935. 10.1002/jps.10179 CASPubMedWeb of Science®Google Scholar 2Neal, J. M., Kunze, K. L., Levy, R. H., O'Reilly, R. A. and Trager, W. F. (2003). Kiiv, an in vivo parameter for predicting the magnitude of a drug interaction arising from competitive enzyme inhibition. Drug Metab Dispos 31: 1043–1048. 10.1124/dmd.31.8.1043 CASPubMedWeb of Science®Google Scholar 3Venkatakrishnan, K., von Moltke, L. L., Obach, R. S. and Greenblatt, D. J. (2003). Drug metabolism and drug interactions: application and clinical value of in vitro models. Curr Drug Metab 4: 423–459. 10.2174/1389200033489361 CASPubMedWeb of Science®Google Scholar 4Houston, J. B. and Galetin, A. (2003). Progress towards prediction of human pharmacokinetic parameters from in vitro technologies. Drug Metab Rev 35: 393–415. 10.1081/DMR-120026870 CASPubMedWeb of Science®Google Scholar 5Blanchard, N., Richert, L., Coassolo, P. and Lave, T. (2004). Qualitative and quantitative assessment of drug-drug interaction potential in man, based on Ki, IC50 and inhibitor concentration. Curr Drug Metab 5: 147–156. 10.2174/1389200043489072 CASPubMedWeb of Science®Google Scholar 6Shou, M. (2005). Prediction of pharmacokinetics and drug-drug interactions from in vitro metabolism data. Curr Opin Drug Discov Devel 8: 66–77. CASPubMedWeb of Science®Google Scholar 7Benet, L. Z., Cummins, C. L. and Wu, C. Y. (2003). Transporter-enzyme interactions: implications for predicting drug-drug interactions from in vitro data. Curr Drug Metab 4: 393–398. 10.2174/1389200033489389 CASPubMedWeb of Science®Google Scholar 8Chien, J. Y., Mohutsky, M. A. and Wrighton, S. A. (2003). Physiological approaches to the prediction of drug-drug interactions in study populations. Curr Drug Metab 4: 347–356. 10.2174/1389200033489307 CASPubMedWeb of Science®Google Scholar 9Ito, K., Brown, H. S. and Houston, J. B. (2004). Database analyses for the prediction of in vivo drug-drug interactions from in vitro data. Br J Clin Pharmacol 57: 473–486. 10.1111/j.1365-2125.2003.02041.x CASPubMedWeb of Science®Google Scholar 10Huang, S. M., Lesko, L. J. and Williams, R. L. (1999). Assessment of the quality and quantity of drug-drug interaction studies in recent NDA submissions: study design and data analysis issues. J Clin Pharmacol 39: 1006–1014. 10.1177/00912709922011764 CASPubMedWeb of Science®Google Scholar 1110a.Walsky, R. L. and Obach, R. S. (2004). Validated assays for human cytochrome P450 activities. Drug Metab Dispos 32: 647–660. 10.1124/dmd.32.6.647 CASPubMedWeb of Science®Google Scholar 12Wu, C. Y. and Benet, L. Z. (2005). Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22: 11–23. 10.1007/s11095-004-9004-4 CASPubMedWeb of Science®Google Scholar 13Kenworthy, K. E., Bloomer, J. C., Clarke, S. E. and Houston, J. B. (1999). CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br J Clin Pharmacol 48: 716–727. 10.1046/j.1365-2125.1999.00073.x CASPubMedWeb of Science®Google Scholar 14Bjornsson, T. D., Callaghan, J. T., Einolf, H. J., Fischer, V., Gan, L. and Grimm, S. et al. (2003). The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab Dispos 31: 815–832. 10.1124/dmd.31.7.815 CASPubMedWeb of Science®Google Scholar 15Wrighton, S. A., Schuetz, E. G., Thummel, K. E., Shen, D. D., Korzekwa, K. R. and Watkins, P. B. (2000). The human CYP3A subfamily: practical considerations. Drug Metab Rev 32: 339–361. 10.1081/DMR-100102338 CASPubMedWeb of Science®Google Scholar 16Tucker, G. T., Houston, J. B. and Huang, S.-M. (2001). Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential—toward a consensus. Clin Pharmacol Ther 70: 103–114. 10.1067/mcp.2001.116891 CASPubMedGoogle Scholar 17Rasmussen, B. B., Jeppesen, U., Gaist, D. and Brosen, K. (1997). Griseofulvin and fluvoxamine interactions with the metabolism of theophylline. Ther Drug Monit 19: 56–62. 10.1097/00007691-199702000-00010 CASPubMedWeb of Science®Google Scholar 18Yao, C., Kunze, K. L., Trager, W. F., Kharasch, E. D. and Levy, R. H. (2003). Comparison of in vitro and in vivo inhibition potencies of fluvoxamine toward CYP2C19. Drug Metab Dispos 31: 565–571. 10.1124/dmd.31.5.565 CASPubMedWeb of Science®Google Scholar 19Lamberg, T. S., Kivisto, K. T., Laitila, J., Martensson, K. and Neuvonen, P. J. (1998). The effect of fluvoxamine on the pharmacokinetics and pharmacodynamics of buspirone. Eur J Clin Pharmacol 54: 761–766. 10.1007/s002280050548 CASPubMedWeb of Science®Google Scholar 20Lam, Y. W., Alfaro, C. L., Ereshefsky, L. and Miller, M. (2003). Pharmacokinetic and pharmacodynamic interactions of oral midazolam with ketoconazole, fluoxetine, fluvoxamine, and nefazodone. J Clin Pharmacol 43: 1274–1282. 10.1177/0091270003259216 CASPubMedWeb of Science®Google Scholar 21Weinberger, M., Hudgel, D., Spector, S. and Chidsey, C. (1977). Inhibition of theophylline clearance by troleandomycin. J Allergy Clin Immunol 59: 228–231. 10.1016/0091-6749(77)90154-3 CASPubMedWeb of Science®Google Scholar 22He, N., Huang, S. L., Zhu, R. H., Tan, Z. R., Liu, J. and Zhu, B. et al. (2003). Inhibitory effect of troleandomycin on the metabolism of omeprazole is CYP2C19 genotype-dependent. Xenobiotica 33: 211–221. 10.1080/0049825021000023996 CASPubMedWeb of Science®Google Scholar 23Pourbaix, S., Desager, J. P., Hulhoven, R., Smith, R. B. and Harvengt, C. (1985). Pharmacokinetic consequences of long term coadministration of cimetidine and triazolobenzodiazepines, alprazolam and triazolam, in healthy subjects. Int J Clin Pharmacol Ther Toxicol 23: 447–451. CASPubMedWeb of Science®Google Scholar 24Abernethy, D. R., Greenblatt, D. J., Divoll, M., Moschitto, L. J., Harmatz, J. S. and Shader, R. I. (1983). Interaction of cimetidine with the triazolobenzodiazepines alprazolam and triazolam. Psychopharmacology 80: 275–278. 10.1007/BF00436169 CASPubMedWeb of Science®Google Scholar 25Friedman, H., Greenblatt, D. J., Burstein, E. S., Scavone, J. M., Harmatz, J. S. and Shader, R. I. (1988). Triazolam kinetics: interaction with cimetidine, propranolol, and the combination. J Clin Pharmacol 28: 228–233. 10.1002/j.1552-4604.1988.tb03137.x CASPubMedWeb of Science®Google Scholar 26Rowland, M. and Matin, S. B. (1973). Kinetics of drug-drug interactions. J Pharmacokinet Biopharm 1: 553–567. 10.1007/BF01059791 CASWeb of Science®Google Scholar 27Ito, K., Hallifax, D., Obach, R. S. and Houston, J. B. (2005). Impact of parallel pathways of drug elimination and multiple CYP involvement on drug-drug interactions: CYP2D6 paradigm. Drug Metab Dispos 33: 837–844. 10.1124/dmd.105.003715 CASPubMedWeb of Science®Google Scholar 28Scordo, M. G., Pengo, V., Spina, E., Dahl, M. L., Gusella, M. and Padrini, R. (2002). Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 72: 702–710. 10.1067/mcp.2002.129321 CASPubMedWeb of Science®Google Scholar 29Kirchheiner, J., Bauer, S., Meineke, I., Rohde, W., Prang, V. and Meisel, C. et al. (2002). Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 12: 101–109. 10.1097/00008571-200203000-00004 CASPubMedWeb of Science®Google Scholar 30Yasui-Furukori, N., Takahata, T., Nakagami, T., Yoshiya, G., Inoue, Y. and Kaneko, S. et al. (2004). Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes. Br J Clin Pharmacol 57: 487–494. 10.1111/j.1365-2125.2003.02047.x CASPubMedWeb of Science®Google Scholar 31Kupfer, A., Desmond, P., Patwardhan, R., Schenker, S. and Branch, R. A. (1984). Mephenytoin hydroxylation deficiency: kinetics after repeated doses. Clinical Pharmacol Ther 35: 33–39. 10.1038/clpt.1984.5 CASPubMedWeb of Science®Google Scholar 32Lennard, M. S., Tucker, G. T., Silas, J. H., Freestone, S., Ramsay, L. E. and Woods, H. F. (1983). Differential stereoselective metabolism of metoprolol in extensive and poor debrisoquin metabolizers. Clin Pharmacol Ther 34: 732–737. 10.1038/clpt.1983.242 CASPubMedWeb of Science®Google Scholar 33Brosen, K., Hansen, J. G., Nielsen, K. K., Sindrup, S. H. and Gram, L. F. (1993). Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 44: 349–355. 10.1007/BF00316471 CASPubMedWeb of Science®Google Scholar 34Monks, T. J., Caldwell, J. and Smith, R. L. (1979). Influence of methylxanthine-containing foods on theophylline metabolism and kinetics. Clin Pharmacol Ther 26: 513–524. 10.1002/cpt1979264513 CASPubMedWeb of Science®Google Scholar 35Dain, J. G., Nicoletti, J. and Ballard, F. (1997). Biotransformation of clozapine in humans. Drug Metab Dispos 25: 603–609. CASPubMedWeb of Science®Google Scholar 36Kanamitsu, S. I., Ito, K. and Sugiyama, Y. (2000). Quantitative prediction of in vivo drug-drug interactions from in vitro data based on physiological pharmacokinetics: use of maximum unbound concentration of inhibitor at the inlet to the liver. Pharm Res 17: 336–343. 10.1023/A:1007509324428 CASPubMedWeb of Science®Google Scholar 37Von Moltke, L. L., Greenblatt, D. J., Cotreau-Bibbo, M. M., Duan, S. X., Harmatz, J. S. and Shader, R. I. (1994). Inhibition of desipramine hydroxylation in vitro by serotonin-reuptake-inhibitor antidepressants, and by quinidine and ketoconazole: a model system to predict drug interactions in vivo. J Pharmacol Exp Ther 268: 1278–1283. CASPubMedWeb of Science®Google Scholar 38Thummel, K. E., Kunze, K. L. and Shen, D. D. (1997). Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv Drug Del Rev 27: 99–127. 10.1016/S0169-409X(97)00039-2 CASPubMedWeb of Science®Google Scholar 39Yang, J., Tucker, G. T. and Rostami-Hodjegan, A. (2004). Cytochrome P450 3A expression and activity in the human small intestine [letter]. Clin Pharmacol Ther 76: 391. 10.1016/j.clpt.2004.07.001 CASPubMedWeb of Science®Google Scholar 40Rostami-Hodjegan, A. and Tucker, G. T. (2004). 'In silico' simulations to assess the 'in vivo' consequences of 'in vitro' metabolic drug-drug interactions. Drug Disc Today Tech 1: 441–448. 10.1016/j.ddtec.2004.10.002 CASPubMedGoogle Scholar 41Wang, Y. H., Jones, D. R. and Hall, S. D. (2004). Prediction of cytochrome P450 3A inhibition by verapamil enantiomers and their metabolites. Drug Metab Dispos 32: 259–266. 10.1124/dmd.32.2.259 CASPubMedWeb of Science®Google Scholar 42Arnadottir, M., Eriksson, L. O., Thysell, H. and Karkas, J. D. (1993). Plasma concentration profiles of simvastatin 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitory activity in kidney transplant recipients with and without ciclosporin. Nephron 65: 410–413. 10.1159/000187521 CASPubMedWeb of Science®Google Scholar 43Margolis, J. M. and Obach, R. S. (2003). Impact of nonspecific binding to microsomes and phospholipid on the inhibition of cytochrome P4502D6: implications for relating in vitro inhibition data to in vivo drug interactions. Drug Metab Dispos 31: 606–611. Appendix References 10.1124/dmd.31.5.606 CASPubMedWeb of Science®Google Scholar Appendix References 44Buch, A. B., Van Harken, D. R., Seidehamel, R. J. and Barbhaiya, R. H. (1993). A study of pharmacokinetic interaction between buspirone and alprazolam at steady state. J Clin Pharmacol 33: 1104–1109. 10.1002/j.1552-4604.1993.tb01947.x CASPubMedWeb of Science®Google Scholar 45Kendall, M. J., Jack, D. B., Laugher, S. J., Lobo, J. and Rolf Smith, S. (1984). Lack of a pharmacokinetic interaction between nifedipine and the beta-adrenoceptor blockers metoprolol and atenolol. Br J Clin Pharmacol 18: 331–335. 10.1111/j.1365-2125.1984.tb02472.x CASPubMedWeb of Science®Google Scholar 46McDonnell, C. G., Harte, S., O'Driscoll, J., O'Loughlin, C., Van Pelt, F. N. and Shorten, G. D. (2003). The effects of concurrent atorvastatin therapy on the pharmacokinetics of intravenous midazolam. Anaesthesia 58: 899–904. 10.1046/j.1365-2044.2003.03339.x CASPubMedWeb of Science®Google Scholar 47Zimmermann, T., Yeates, R. A., Laufen, H., Scharpf, F., Leitold, M. and Wildfeuer, A. (1996). Influence of the antibiotics erythromycin and azithromycin on the pharmacokinetics and pharmacodynamics of midazolam. Arzneimittelforschung 46: 213–217. CASPubMedWeb of Science®Google Scholar 48Schmider, J., Brockmoller, J., Arold, G., Bauer, S. and Roots, I. (1999). Simultaneous assessment of CYP3A4 and CYP1A2 activity in vivo with alprazolam and caffeine. Pharmacogenetics 9: 725–734. 10.1097/01213011-199912000-00007 CASPubMedWeb of Science®Google Scholar 49Naline, E., Sanceaume, M., Pays, M. and Advenier, C. (1988). Application of theophylline metabolite assays to the exploration of liver microsome oxidative function in man. Fundam Clin Pharmacol 2: 341–351. 10.1111/j.1472-8206.1988.tb00645.x CASPubMedWeb of Science®Google Scholar 50Back, D. J., Tjia, J., Monig, H., Ohnhaus, E. E. and Park, B. K. (1988). Selective inhibition of drug oxidation after simultaneous administration of two probe drugs, antipyrine and tolbutamide. Eur J Clin Pharmacol 34: 157–163. 10.1007/BF00614553 CASPubMedWeb of Science®Google Scholar 51Steiner, E. and Spina, E. (1987). Differences in the inhibitory effect of cimetidine on desipramine metabolism between rapid and slow debrisoquin hydroxylators. Clin Pharmacol Ther 42: 278–282. 10.1038/clpt.1987.147 CASPubMedWeb of Science®Google Scholar 52Pourbaix, S., Desager, J. P., Hulhoven, R., Smith, R. B. and Harvengt, C. (1985). Pharmacokinetic consequences of long term coadministration of cimetidine and triazolobenzodiazepines, alprazolam and triazolam, in healthy subjects. Int J Clin Pharmacol Ther Toxicol 23: 447–451. CASPubMedWeb of Science®Google Scholar 53Moller, S. E., Larsen, F., Pitsiu, M. and Rolan, P. E. (2000). Effect of citalopram on plasma levels of oral theophylline. Clin Ther 22: 1494–1501. 10.1016/S0149-2918(00)83047-7 CASPubMedWeb of Science®Google Scholar 54Obach, R. S., Walsky, R. L., Venkatakrishnan, K., Gaman, E. A., Houston, J. B. and Tremaine, L. M. (2006). The utility on in vito cytochrome P450 inhibition data in the prediction of drug-drug interactions. J Pharmacol Exp Ther. in press. Google Scholar 55Priskorn, M., Sidhu, J. S., Larsen, F., Davis, J. D., Khan, A. Z. and Rolan, P. E. (1997). Investigation of multiple dose citalopram on the pharmacokinetics and pharmacodynamics of racemic warfarin. Br J Clin Pharmacol 44: 199–202. 10.1046/j.1365-2125.1997.00628.x CASPubMedWeb of Science®Google Scholar 56Jeppesen, U., Gram, L. F., Vistisen, K., Loft, S., Poulsen, H. E. and Brosen, K. (1996). Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 51: 73–78. 10.1007/s002280050163 CASPubMedWeb of Science®Google Scholar 57Gram, L. F., Hansen, M. G., Sindrup, S. H., Brosen, K., Poulsen, J. H. and Aaes-Jorgensen, T. et al. (1993). Citalopram: interaction studies with levomepromazine, imipramine, and lithium. Ther Drug Monit 15: 18–24. 10.1097/00007691-199302000-00003 CASPubMedWeb of Science®Google Scholar 58Hall, J., Naranjo, C. A., Sproule, B. A. and Herrmann, N. (2003). Pharmacokinetic and pharmacodynamic evaluation of the inhibition of alprazolam by citalopram and fluoxetine. J Clin Psychopharmacol 23: 349–357. 10.1097/01.jcp.0000085407.08426.e1 CASPubMedWeb of Science®Google Scholar 59Gillum, J. G., Israel, D. S., Scott, R. B., Climo, M. W. and Polk, R. E. (1996). Effect of combination therapy with ciprofloxacin and clarithromycin on theophylline pharmacokinetics in healthy volunteers. Antimicrob Agents Chemother 40: 1715–1716. CASPubMedWeb of Science®Google Scholar 60Jayasagar, G., Dixit, A. A., Kishan, V. and Rao, Y. M. (2000). Effect of clarithromycin on the pharmacokinetics of tolbutamide. Drug Metab Drug Interact 16: 207–215. 10.1515/DMDI.2000.16.3.207 CASPubMedGoogle Scholar 61Furuta, T., Ohashi, K., Kobayashi, K., Iida, I., Yoshida, H. and Shirai, N. et al. (1999). Effects of clarithromycin on the metabolism of omeprazole in relation to CYP2C19 genotype status in humans. Clin Pharmacol Ther 66: 265–274. 10.1016/S0009-9236(99)70034-2 CASPubMedWeb of Science®Google Scholar 62Gorski, J. C., Jones, D. R., Haehner-Daniels, B. D., Hamman, M. A., O'Mara, E. M. Jr and Hall, S. D. (1998). The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 64: 133–143. 10.1016/S0009-9236(98)90146-1 CASPubMedWeb of Science®Google Scholar 63Arnadottir, M., Eriksson, L. O., Thysell, H. and Karkas, J. D. (1993). Plasma concentration profiles of simvastatin 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitory activity in kidney transplant recipients with and without ciclosporin. Nephron 65: 410–413. 10.1159/000187521 CASPubMedWeb of Science®Google Scholar 64Solomon, H. M. and Schrogie, J. J. (1967). Effect of phenyramidol and bishydroxycoumarin on the metabolism of tolbutamide in human subjects. Metabolism 16: 1029–1033. 10.1016/0026-0495(67)90097-2 CASPubMedWeb of Science®Google Scholar 65Koren, G., Zylber-Katz, E., Granit, L. and Levy, M. (1986). Pharmacokinetic studies of nifedipine and digoxin co-administration. Int J Clin Pharmacol Ther Toxicol 24: 39–42. CASPubMedWeb of Science®Google Scholar 66Soto, J., Sacristan, J. A. and Alsar, M. J. (1994). Diltiazem treatment impairs theophylline elimination in patients with bronchospastic airway disease. Ther Drug Monit 16: 49–52. 10.1097/00007691-199402000-00008 CASPubMedWeb of Science®Google Scholar 67Dixit, A. A. and Rao, Y. M. (1999). Pharmacokinetic interaction between diltiazem and tolbutamide. Drug Metabol Drug Interact 15: 269–277. 10.1515/DMDI.1999.15.4.269 CASPubMedGoogle Scholar 68Tateishi, T., Nakashima, H., Shitou, T., Kumagai, Y., Ohashi, K. and Hosoda, S. et al. (1989). Effect of diltiazem on the pharmacokinetics of propranolol, metoprolol and atenolol. Eur J Clin Pharmacol 36: 67–70. 10.1007/BF00561026 CASPubMedWeb of Science®Google Scholar 69Lamberg, T. S., Kivisto, K. T. and Neuvonen, P. J. (1998). Effects of verapamil and diltiazem on the pharmacokinetics and pharmacodynamics of buspirone. Clin Pharmacol Ther 63: 640–645. 10.1016/S0009-9236(98)90087-X CASPubMedWeb of Science®Google Scholar 70Hamelin, B. A., Bouayad, A., Methot, J., Jobin, J., Desgagnes, P. and Poirier, P. et al. (2000). Significant interaction between the nonprescription antihistamine diphenhydramine and the CYP2D6 substrate metoprolol in healthy men with high or low CYP2D6 activity. Clin Pharmacol Ther 67: 466–477. 10.1067/mcp.2000.106464 CASPubMedWeb of Science®Google Scholar 71Loi, C. M., Day, J. D., Jue, S. G., Bush, E. D., Costello, P. and Dewey, L. V. et al. (1989). Dose-dependent inhibition of theophylline metabolism by disulfiram in recovering alcoholics. Clin Pharmacol Ther 45: 476–486. 10.1038/clpt.1989.61 CASPubMedWeb of Science®Google Scholar 72Svendsen, T. L., Kristensen, M. B., Hansen, J. M. and Skovsted, L. (1976). The influence of disulfiram on the half life and metabolic clearance rate of diphenylhydantoin and tolbtamide in man. Eur J Clin Pharmacol 22: 439–441. 10.1007/BF00606562 Google Scholar 73Frye, R. F. and Branch, R. A. (2002). Effect of chronic disulfiram administration on the activities of CYP1A2, CYP2C19, CYP2D6, CYP2E1, and N-acetyltransferase in healthy human subjects. Br J Clin Pharmacol 53: 155–162. 10.1046/j.1365-2125.2002.01522.x CASPubMedWeb of Science®Google Scholar 74Ciraulo, D. A., Barnhill, J. and Boxenbaum, H. (1985). Pharmacokinetic interaction of disulfiram and antidepressants. Am J Psychiatry 142: 1373–1374. 10.1176/ajp.142.11.1373 CASPubMedGoogle Scholar 75Kharasch, E. D., Hankins, D. C., Jubert, C., Thummel, K. E. and Taraday, J. K. (1999). Lack of single-dose disulfiram effects on cytochrome P-450 2C9, 2C19, 2D6, and 3A4 activities: evidence for specificity toward P-450 2E1. Drug Metab Dispos 27: 717–723. CASPubMedWeb of Science®Google Scholar 76Wijnands, W. J., Vree, T. B. and van Herwaarden, C. L. (1986). The influence of quinolone derivatives on theophylline clearance. Br J Clin Pharmacol 22: 677–683. 10.1111/j.1365-2125.1986.tb02957.x CASPubMedWeb of Science®Google Scholar 77Prince, R. A., Wing, D. S., Weinberger, M. M., Hendeles, L. S. and Riegelman, S. (1981). Effect of erythromycin on theophylline kinetics. J Allergy Clin Immunol 68: 427–431. 10.1016/0091-6749(81)90196-2 CASPubMedWeb of Science®Google Scholar 78Weibert, R. T., Lorentz, S. M., Townsend, R. J., Cook, C. E., Klauber, M. R. and Jagger, P. I. (1989). Effect of erythromycin in patients receiving long-term warfarin therapy. Clin Pharm 8: 210–214. CASPubMedWeb of Science®Google Scholar 79Kivisto, K. T., Lamberg, T. S., Kantola, T. and Neuvonen, P. J. (1997). Plasma buspirone concentrations are greatly increased by erythromycin and itraconazole. Clin Pharmacol Ther 62: 348–354. 10.1016/S0009-9236(97)90038-2 CASPubMedWeb of Science®Google Scholar 80Konishi, H., Morita, K. and Yamaji, A. (1994). Effect of fluconazole on theophylline disposition in humans. Eur J Clin Pharmacol 46: 309–312. 10.1007/BF00194397 CASPubMedWeb of Science®Google Scholar 81Neal, J. M., Kunze, K. L., Levy, R. H., O'Reilly, R. A. and Trager, W. F. (2003). Kiiv, an in vivo parameter for predicting the magnitude of a drug interaction arising from competitive enzyme inhibition. Drug Metab Dispos 31: 1043–1048. 10.1124/dmd.31.8.1043 CASPubMedWeb of Science®Google Scholar 82Kang, B. C., Yang, C. Q., Cho, H. K., Suh, O. K. and Shin, W. G. (2002). Influence of fluconazole on the pharmacokinetics of omeprazole in healthy volunteers. Biopharm Drug Dispos 23: 77–81. 10.1002/bdd.291 CASPubMedWeb of Science®Google Scholar 83Olkkola, K. T., Ahonen, J. and Neuvonen, P. J. (1996). The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 82: 511–516. 10.1097/00000539-199603000-00015 CASPubMedWeb of Science®Google Scholar 84Spina, E., Avenoso, A., Facciola, G., Fabrazzo, M., Monteleone, P. and Maj, M. et al. (1998). Effect of fluoxetine on the plasma concentrations of clozapine and its major metabolites in patients with schizophrenia. Int Clin Psychopharmacol 13: 141–145. 10.1097/00004850-199805000-00009 CASPubMedWeb of Science®Google Scholar 85Bergstrom, R. F., Peyton, A. L. and Lemberger, L. (1992). Quantification and mechanism of the fluoxetine and tricyclic antidepressant interaction. Clin Pharmacol Ther 51: 239–248. 10.1038/clpt.1992.18 CASPubMedWeb of Science®Google Scholar 86Rasmussen, B. B., Jeppesen, U., Gaist, D. and Brosen, K. (1997). Griseofulvin and fluvoxamine interactions with the metabolism of theophylline. Ther Drug Monit 19: 56–62. 10.1097/00007691-199702000-00010 CASPubMedWeb of Science®Google Scholar 87Madsen, H., Enggaard, T. P., Hansen, L. L., Klitgaard, N. A. and Brosen, K. (2001). Fluvoxamine inhibits the CYP2C9 catalyzed biotransformation of tolbutamide. Clin Pharmacol Ther 69: 41–47. 10.1067/mcp.2001.112689 CASPubMedWeb of Science®Google Scholar 88Yao, C., Kunze, K. L., Trager, W. F., Kharasch, E. D. and Levy, R. H. (2003). Comparison of in vitro and in vivo inhibition potencies of fluvoxamine toward CYP2C19. Drug Metab Dispos 31: 565–571. 10.1124/dmd.31.5.565 CASPubMedWeb of Science®Google Scholar 89Spina, E., Pollicino, A. M., Avenoso, A., Campo, G. M., Perucca, E. and Caputi, A. P. (1993). Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. Ther Drug Monit 15: 243–246. 10.1097/00007691-199306000-00011 CASPubMedWeb of Science®Google Scholar 90Lamberg, T. S., Kivisto, K. T., Laitila, J., Martensson, K. and Neuvonen, P. J. (1998). The effect of fluvoxamine on the pharmacokinetics and pharmacodynamics of buspirone. Eur J Clin Pharmacol 54: 761–766. 10.1007/s002280050548 C

Referência(s)