Enzyme Immobilization on Silane-Modified Surface through Short Linkers: Fate of Interfacial Phases and Impact on Catalytic Activity
2014; American Chemical Society; Volume: 30; Issue: 14 Linguagem: Inglês
10.1021/la404935q
ISSN1520-5827
AutoresNesrine Aissaoui, Latifa Bergaoui, Souhir Boujday, Jean‐François Lambert, Christophe Méthivier, Jessem Landoulsi,
Tópico(s)Molecular Junctions and Nanostructures
ResumoWe investigated the mechanism of enzyme immobilization on silanized surfaces through coupling agents (cross-linkers) in order to understand the role of these molecules on interfacial processes and their effect on catalytic activity. To this end, we used a model multimeric enzyme (G6PDH) and several cross-linking molecules with different chemical properties, including the nature of the end-group (-NCO, -NCS, -CHO), the connecting chain (aliphatic vs aromatic), and geometrical constraints (meta vs para-disubstituted aromatics). There did not seem to be radical differences in the mechanism of enzyme adsorption according to the linker used as judged from QCM-D, except that in the case of DIC (1,4-phenylene diisocyanate) the adsorption occurred more rapidly. In contrast, the nature of the cross-linker exerted a strong influence on the amount of enzyme immobilized as estimated from XPS, and more unexpectedly on the stability of the underlying silane layer. DIC, PDC (1,4-phenylene diisothiocyanate), or GA (glutaraldehyde) allowed successful enzyme immobilization. When the geometry of the linker was changed from 1,4-phenylene diisothiocyanate to 1,3-phenylene diisothiocyanate (MDC), the silane layer was subjected to degradation, upon enzyme adsorption, and the amount of immobilized molecules was significantly lowered. TE (terephtalaldehyde) and direct enzyme deposition without cross-linker were similar to MDC. The organization of immobilized enzymes also depended on the immobilization procedure, as different degrees of aggregation were observed by AFM. A correlation between the size of the aggregates and the catalytic properties of the enzyme was established, suggesting that aggregation may enhance the thermostability of the multimeric enzyme, probably through a compaction of the 3D structure.
Referência(s)