Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression
2008; Elsevier BV; Volume: 372; Issue: 1 Linguagem: Inglês
10.1016/j.bbrc.2008.04.176
ISSN1090-2104
AutoresKazuhiro Hasegawa, Shu Wakino, Kyoko Yoshioka, Satoru Tatematsu, Yoshikazu Hara, Hitoshi Minakuchi, Naoki Washida, Hirobumi Tokuyama, Kôichi Hayashi, Hiroshi Itoh,
Tópico(s)Connexins and lens biology
ResumoNAD(+)-dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H(2)O(2). Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H(2)O(2), Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H(2)O(2)-induced apoptosis through the upregulation of catalase. H(2)O(2) induced the nuclear accumulation of forkhead transcription factor, FoxO3a and the gene silencing of FoxO3a enhanced H(2)O(2)-induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels.
Referência(s)