Unique phylogenetic relationships of glucokinase and glucosephosphate isomerase of the amitochondriate eukaryotes Giardia intestinalis, Spironucleus barkhanus and Trichomonas vaginalis
2001; Elsevier BV; Volume: 281; Issue: 1-2 Linguagem: Inglês
10.1016/s0378-1119(01)00773-9
ISSN1879-0038
AutoresKatrin Henze, David S. Horner, Setsuo Suguri, Dorothy V. Moore, Lidya B. Sánchez, Miklós Müller, T. Martin Embley,
Tópico(s)Parasitic Infections and Diagnostics
ResumoGlucokinase (GK) and glucosephosphate isomerase (GPI), the first two enzymes of the glycolytic pathway of the diplomonads Giardia intestinalis and Spironucleus barkhanus, Type I amitochondriate eukaryotes, were sequenced. GPI of the parabasalid Trichomonas vaginalis was also sequenced. The diplomonad GKs belong to a family of specific GKs present in cyanobacteria, in some proteobacteria and also in T. vaginalis, a Type II amitochondriate protist. These enzymes are not part of the hexokinase family, which is broadly distributed among eukaryotes, including the Type I amitochondriate parasite Entamoeba histolytica. G. intestinalis GK expressed in Escherichia coli was specific for glucose and glucosamine, as are its eubacterial homologs. The sequence of diplomonad and trichomonad GPIs formed a monophyletic group more closely related to cyanobacterial and chloroplast sequences than to cytosolic GPIs of other eukaryotes and prokaryotes. The findings show that certain enzymes of the energy metabolism of these amitochondriate protists originated from sources different than those of other eukaryotes. The observation that the two diplomonads and T. vaginalis share the same unusual GK and GPI is consistent with gene trees that suggest a close relationship between diplomonads and parabasalids. The intriguing relationships of these enzymes to cyanobacterial (and chloroplast) enzymes might reflect horizontal gene transfer between the common ancestor of the diplomonad and parabasalid lineages and the ancestor of cyanobacteria.
Referência(s)