Artigo Acesso aberto Revisado por pares

Concentration of docosahexaenoic and eicosapentaenoic acids by enzymatic alcoholysis with different acyl-acceptors

2014; Elsevier BV; Volume: 91; Linguagem: Inglês

10.1016/j.bej.2014.08.010

ISSN

1873-295X

Autores

Lorena Martín Valverde, Pedro A. González Moreno, Luis Cerdán, Elvira Navarro López, Beatriz Castillo López, Alfonso Robles Medina,

Tópico(s)

Cholesterol and Lipid Metabolism

Resumo

The aim of this work was to produce docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) enriched acylglycerols by alcoholysis of tuna and sardine oils, respectively, using isobutanol and 1-butanol as acyl-acceptors. The alcoholysis reactions were catalyzed by lipases Lipozyme® TL IM from Thermomyces lanuginosus and lipase QLG® from Alcaligenes sp., because these lipases have shown selectivity towards DHA and EPA, respectively. Studies were made to determine the influence of reaction time, alcohol/oil molar ratio, lipase amount and temperature. In the optimized conditions for the alcoholysis of tuna and sardine oils catalyzed by Lipozyme TL IM and lipase QLG, respectively, the DHA and EPA contents were trebled (from 22 to 69% for DHA, and from 19 to 61% for EPA). The stability of both lipases was also determined. Although Lipozyme TL IM is much more stable in isobutanol than in ethanol, with the former the conversion attained after four reaction cycles was about 40% of the initial conversion. In similar conditions, the conversion obtained with lipase QLG was about 88% of the initial conversion. In addition, the separation of DHA enriched acylglycerols and isobutyl esters from an alcoholysis reaction was studied by liquid–liquid fractionation using the ethanol–water–hexane biphasic system. The DHA enriched acylglycerols obtained were 97.6% pure (64.4% DHA).

Referência(s)