Sul problema della temperatura nell'ellissoide
1896; Springer Science+Business Media; Volume: 24; Issue: 1 Linguagem: Italiano
10.1007/bf02419523
ISSN1618-1891
Autores Tópico(s)Nonlinear Dynamics and Pattern Formation
ResumoSOMIGLIANAPario .-~ ella introduzione alln classica Memoria : Sur 1'dlnilibre des teutpcnatures dans of ellipso'ide tt trois axes inegeaux (*) it LAME, a proposito del problema da lui risolto, cosi serive : a . . .H s'agissa .itde traiter un corps pour lequel les procedes d'analvse, emploves jnsqu'ici, etaient totalement impuissants : car ill les coordonnees du prisme rectangle, ni celle de la sphere, les seules dont les geonnetres aient encore fait usage en physique x mathenaatique, no pouvaient aborder I' ellipsoide ~, .Ma quest' asserzione dell' illustre analista non e completamente esatta ; poichCC, se e vero che mediante lo coordinate e le trascendenti ellittiche si arriva alla nota elegante rappresentazione delle soluzioni semplici del problema come prodotti di tre funzioni di una sola variabile, d'altra pane non si 1,7uo dire che I' use di queste coordinate sia indispensabile per risolvere it problema dell' ellissoide .E difatti i prodotti di LAmE esprimono in ultima analisi funzioni razionali intere delle coordinate rettangolari (che not chiameremo polinomi di Lame) ed e quindi lecito domandare se sin possibile definire e costruire questi polinomi per via puramente algebrica, come nel easo della sfera e possibile definire e costruire le cosidette funzioni armoniche senza ricorrere alle forniole trascendenti che s' incontrano facendo use delle coordinate sferiche .Ora una via che pub effettivamente condurre ad un tale risultato si ha applieando un metodo d' integrazione, da me gig, esposto sommariamente in una Nota (**) dei Rendiconti del R .Istituto Lombardo (serie 2 .a,vol .25, 1891) .( t `') .10111-11al de Matt nati'lult ^`Iett}r w ally 1 ?t2G',o.3p -1, 1839 .
Referência(s)