Revisão Acesso aberto Revisado por pares

Stem Cell Niche: Microenvironment and Beyond

2008; Elsevier BV; Volume: 283; Issue: 15 Linguagem: Inglês

10.1074/jbc.r700043200

ISSN

1083-351X

Autores

Jiwang Zhang, Linheng Li,

Tópico(s)

Hematopoietic Stem Cell Transplantation

Resumo

The multipotentiality and self-renewal ability of stem cells are controlled by intrinsic genetic pathways that are subject to regulation by extrinsic signals emanating from the stem cell niche. The stem cell niche provides a microenvironment composed of cellular structures or extracellular matrix in which stem cells are maintained as undifferentiated (1Li L. Xie T. Annu. Rev. Cell Dev. Biol. 2005; 21: 605-631Crossref PubMed Scopus (942) Google Scholar, 2Lin H. Nat. Rev. Genet. 2002; 3: 931-940Crossref PubMed Scopus (305) Google Scholar, 3Scadden D.T. Nature. 2006; 441: 1075-1079Crossref PubMed Scopus (1508) Google Scholar, 4Spradling A. Drummond-Barbosa D. Kai T. Nature. 2001; 414: 98-104Crossref PubMed Scopus (1215) Google Scholar, 5Watt F.M. Hogan B.L. Science. 2000; 287: 1427-1430Crossref PubMed Scopus (1474) Google Scholar, 6Fuchs E. Tumbar T. Guasch G. Cell. 2004; 116: 769-778Abstract Full Text Full Text PDF PubMed Scopus (1481) Google Scholar). The concept of "the stem cell niche" was first proposed in studies of the HSC 2The abbreviations used are:HSChematopoietic stem cellGSCgerm line stem cellBMbone marrowCARCXCL12-abundant reticularCBscystoblastsESCescort stem cellCPscyst progenitorsAng-1angiopoietin-1.2The abbreviations used are:HSChematopoietic stem cellGSCgerm line stem cellBMbone marrowCARCXCL12-abundant reticularCBscystoblastsESCescort stem cellCPscyst progenitorsAng-1angiopoietin-1. (7Schofield R. Blood Cells. 1978; 4: 7-25PubMed Google Scholar); however, in vivo evidence of its existence was first shown in the Drosophila GSC (8Cox D.N. Chao A. Baker J. Chang L. Qiao D. Lin H. Genes Dev. 1998; 12: 3715-3727Crossref PubMed Scopus (802) Google Scholar, 9King F.J. Lin H. Development (Camb.). 1999; 126: 1833-1844PubMed Google Scholar, 10Xie T. Spradling A.C. Science. 2000; 290: 328-330Crossref PubMed Scopus (620) Google Scholar). Over the past several years, there has been much progress made in identifying stem cell niches in different mammal tissues, including nerves, hair follicles, intestines, teeth, and BM (11Tumbar T. Guasch G. Greco V. Blanpain C. Lowry W.E. Rendl M. Fuchs E. Science. 2004; 303: 359-363Crossref PubMed Scopus (1631) Google Scholar, 12Yen T.H. Wright N.A. Stem Cell Rev. 2006; 2: 203-212Crossref PubMed Scopus (227) Google Scholar, 13Conover J.C. Notti R.Q. Cell Tissue Res. 2008; 331: 211-224Crossref PubMed Scopus (123) Google Scholar, 14Doetsch F. Curr. Opin. Genet. Dev. 2003; 13: 543-550Crossref PubMed Scopus (529) Google Scholar, 15Ohshima H. Nakasone N. Hashimoto E. Sakai H. Nakakura-Ohshima K. Harada H. Arch. Oral Biol. 2005; 50: 153-157Crossref PubMed Scopus (81) Google Scholar, 16Wilson A. Trumpp A. Nat. Rev. Immunol. 2006; 6: 93-106Crossref PubMed Scopus (1050) Google Scholar). In this review, our focus is on comparing Drosophila GSC niches and mouse HSC niches (two of the best characterized niches). By such comparison, we hope to provide some common principles of stem cell niches that will be useful in other tissue stem cell niche studies. hematopoietic stem cell germ line stem cell bone marrow CXCL12-abundant reticular cystoblasts escort stem cell cyst progenitors angiopoietin-1. hematopoietic stem cell germ line stem cell bone marrow CXCL12-abundant reticular cystoblasts escort stem cell cyst progenitors angiopoietin-1. In recent years, remarkable progress has been made in the identification and characterization of the stem cell niches in invertebrate systems (10Xie T. Spradling A.C. Science. 2000; 290: 328-330Crossref PubMed Scopus (620) Google Scholar, 17Tulina N. Matunis E. Science. 2001; 294: 2546-2549Crossref PubMed Scopus (506) Google Scholar, 18Kiger A.A. Jones D.L. Schulz C. Rogers M.B. Fuller M.T. Science. 2001; 294: 2542-2545Crossref PubMed Scopus (538) Google Scholar, 19Lin H. Spradling A.C. Dev. Genet. 1995; 16: 6-12Crossref PubMed Scopus (180) Google Scholar, 20Crittenden S.L. Bernstein D.S. Bachorik J.L. Thompson B.E. Gallegos M. Petcherski A.G. Moulder G. Barstead R. Wickens M. Kimble J. Nature. 2002; 417: 660-663Crossref PubMed Scopus (337) Google Scholar, 21Mandal L. Martinez-Agosto J.A. Evans C.J. Hartenstein V. Banerjee U. Nature. 2007; 446: 320-324Crossref PubMed Scopus (220) Google Scholar, 22Krzemien J. Dubois L. Makki R. Meister M. Vincent A. Crozatier M. Nature. 2007; 446: 325-328Crossref PubMed Scopus (246) Google Scholar). In studies of GSCs in Drosophila, the ovary and testis provide relatively simple but elegant anatomic structures with few cell types and unique stem cell markers. These advantages facilitated identification of the cellular components of the stem cell niche and definition of the molecular basis of physical interaction between stem cells and their niches (23Song X. Xie T. Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 14813-14818Crossref PubMed Scopus (184) Google Scholar, 24Yamashita Y.M. Jones D.L. Fuller M.T. Science. 2003; 301: 1547-1550Crossref PubMed Scopus (595) Google Scholar) and revealed key niche signals involved in stem cell regulation (18Kiger A.A. Jones D.L. Schulz C. Rogers M.B. Fuller M.T. Science. 2001; 294: 2542-2545Crossref PubMed Scopus (538) Google Scholar, 25LaFever L. Drummond-Barbosa D. Science. 2005; 309: 1071-1073Crossref PubMed Scopus (248) Google Scholar, 26Szakmary A. Cox D.N. Wang Z. Lin H. Curr. Biol. 2005; 15: 171-178Abstract Full Text Full Text PDF PubMed Scopus (124) Google Scholar, 27Xie T. Spradling A.C. Cell. 1998; 94: 251-260Abstract Full Text Full Text PDF PubMed Scopus (530) Google Scholar, 28Yamashita Y.M. Fuller M.T. Jones D.L. J. Cell Sci. 2005; 118: 665-672Crossref PubMed Scopus (166) Google Scholar, 29Parisi M.J. Lin H. Cell Res. 1998; 8: 15-21Crossref PubMed Scopus (38) Google Scholar, 30King F.J. Szakmary A. Cox D.N. Lin H. Mol. Cell. 2001; 7: 497-508Abstract Full Text Full Text PDF PubMed Scopus (126) Google Scholar, 31Wang Z. Lin H. Science. 2004; 303: 2016-2019Crossref PubMed Scopus (197) Google Scholar). In the murine hematopoietic system, HSCs have been well defined (32Spangrude G.J. Heimfeld S. Weissman I.L. Science. 1988; 241: 58-62Crossref PubMed Scopus (2226) Google Scholar, 33Weissman I.L. Science. 2000; 287: 1442-1446Crossref PubMed Scopus (713) Google Scholar), but identification of the HSC niches is just beginning. This search has been hampered by the complexity of the BM structure and cellular components and by the lack of unique HSC markers or distinctive characteristics of BM stromal cells. Two HSC niches have been proposed in murine BM, an osteoblastic niche and a vascular niche, in which osteoblasts and vascular endothelial cells have been demonstrated as major components, respectively (34Zhang J. Niu C. Ye L. Huang H. He X. Tong W.G. Ross J. Haug J. Johnson T. Feng J.Q. Harris S. Wiedemann L.M. Mishina Y. Li L. Nature. 2003; 425: 836-841Crossref PubMed Scopus (2385) Google Scholar, 35Calvi L.M. Adams G.B. Weibrecht K.W. Weber J.M. Olson D.P. Knight M.C. Martin R.P. Schipani E. Divieti P. Bringhurst F.R. Milner L.A. Kronenberg H.M. Scadden D.T. Nature. 2003; 425: 841-846Crossref PubMed Scopus (2799) Google Scholar, 36Arai F. Hirao A. Ohmura M. Sato H. Matsuoka S. Takubo K. Ito K. Koh G.Y. Suda T. Cell. 2004; 118: 149-161Abstract Full Text Full Text PDF PubMed Scopus (1540) Google Scholar, 37Nilsson S.K. Johnston H.M. Whitty G.A. Williams B. Webb R.J. Denhardt D.T. Bertoncello I. Bendall L.J. Simmons P.J. Haylock D.N. Blood. 2005; 106: 1232-1239Crossref PubMed Scopus (605) Google Scholar, 38Heissig B. Rafii S. Akiyama H. Ohki Y. Sato Y. Rafael T. Zhu Z. Hicklin D.J. Okumura K. Ogawa H. Werb Z. Hattori K. J. Exp. Med. 2005; 202: 739-750Crossref PubMed Scopus (195) Google Scholar, 39Moore K.A. Curr. Opin. Hematol. 2004; 11: 107-111Crossref PubMed Scopus (56) Google Scholar, 40Taichman R.S. Blood. 2005; 105: 2631-2639Crossref PubMed Scopus (469) Google Scholar, 41Kiel M.J. Yilmaz O.H. Iwashita T. Terhorst C. Morrison S.J. Cell. 2005; 121: 1109-1121Abstract Full Text Full Text PDF PubMed Scopus (2414) Google Scholar). A recent study suggested that a population of reticular cells named CAR cells, which express a high level of CXCL12 (also known as stromal cell-derived factor-1 or pre-B cell growth-stimulating factor), are in contact with HSCs in both osteoblastic and vascular niches (42Sugiyama T. Kohara H. Noda M. Nagasawa T. Immunity. 2006; 25: 977-988Abstract Full Text Full Text PDF PubMed Scopus (1693) Google Scholar). Drosophila ovary and testis provide attractive models for stem cell niche studies. In Drosophila ovary, cap cells, a specific type of somatic cell located at the tip of the germarium in the ovary, function as the niche for GSCs. An E-cadherin/β-catenin-formed cell-cell adhesion junction mediates the physical interaction between GSCs and their niche cells (23Song X. Xie T. Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 14813-14818Crossref PubMed Scopus (184) Google Scholar, 46Song X. Zhu C.H. Doan C. Xie T. Science. 2002; 296: 1855-1857Crossref PubMed Scopus (389) Google Scholar), ensuring stem cell control by niche signals. Normally, asymmetric division of stem cells results in two daughter cells with different fates: one daughter cell attaches to the niche and is maintained as a stem cell (self-renewal), whereas the other daughter cell leaves the niche and develops into a cystoblast (1Li L. Xie T. Annu. Rev. Cell Dev. Biol. 2005; 21: 605-631Crossref PubMed Scopus (942) Google Scholar, 4Spradling A. Drummond-Barbosa D. Kai T. Nature. 2001; 414: 98-104Crossref PubMed Scopus (1215) Google Scholar). CBs undergo four incomplete cell divisions to form an interconnected 2–16-cell germ line cyst. In addition to the GSC, another type of cell called the ESC also attaches to cap cells interspersed between the GSCs. Together with cap cells, ESCs encapsulate GSCs to separate GSCs from their differentiated daughter cells. When the GSCs divide and detach from the niche to produce CBs and cyst cells, the ESCs also proliferate and differentiate to produce more escort cells. The escort cells expand and continue to encapsulate CBs and cysts during the process of cyst formation and are finally replaced by follicle cells after the 16-cell germ line cyst stage (Fig. 1a). Interestingly, the newly formed cysts (prior to the eight-cell cyst stage, while still encapsulated by the escort cell) can revert to the stem cell state under certain circumstances, suggesting that they may still retain (albeit limited) stem cell properties (47Kai T. Spradling A. Nature. 2004; 428: 564-569Crossref PubMed Scopus (267) Google Scholar). A similar niche is also found in Drosophila testis and is composed of hub cells located at the end of the testis (48Le Bras S. Van Doren M. Dev. Biol. 2006; 294: 92-103Crossref PubMed Scopus (96) Google Scholar). Male GSCs surrounding the hub cells are interspersed with CPs (which are counterparts of ESCs in the ovary). Both GSCs and CPs are attached to the hub cells through an adhesion junction. Similar to ESCs in the ovary, proliferation and differentiation of CPs always accompany proliferation and differentiation of GSCs. CPs in the testis produce cyst cells, which encapsulate the gonialblasts (the immediate daughters of male GSCs) during spermatogonium formation (Fig. 1b). The newly formed gonialblasts can also revert to stem cells under certain circumstances, resembling their counterpart cells (CBs and cysts) in the ovary (49Brawley C. Matunis E. Science. 2004; 304: 1331-1334Crossref PubMed Scopus (326) Google Scholar). The role of cap and hub cells in GSC regulation has been well studied, but the contribution of ESCs and their offspring in the ovary and CPs and their progeny in the testis to GSC self-renewal, proliferation, and differentiation is largely unknown. However, it is known that a dialogue between the two types of cells is required for the coordination during organogenesis (30King F.J. Szakmary A. Cox D.N. Lin H. Mol. Cell. 2001; 7: 497-508Abstract Full Text Full Text PDF PubMed Scopus (126) Google Scholar). Cap and hub cells provide an attachment point for anchoring GSCs to the niche; they also produce signals that inhibit differentiation but promote self-renewal of stem cells (17Tulina N. Matunis E. Science. 2001; 294: 2546-2549Crossref PubMed Scopus (506) Google Scholar). The stem cell niches in mammals are very complicated because of the complexity of cellular components of mammalian tissues, even though the mechanism for niche regulation is conserved from invertebrate to vertebrate. In mammals, BM tissue is composed of more than eight different hematopoietic cell lineages supported by a network of mesenchymal stromal cells and vascular endothelial cells. The two HSC niches, osteoblastic (34Zhang J. Niu C. Ye L. Huang H. He X. Tong W.G. Ross J. Haug J. Johnson T. Feng J.Q. Harris S. Wiedemann L.M. Mishina Y. Li L. Nature. 2003; 425: 836-841Crossref PubMed Scopus (2385) Google Scholar, 35Calvi L.M. Adams G.B. Weibrecht K.W. Weber J.M. Olson D.P. Knight M.C. Martin R.P. Schipani E. Divieti P. Bringhurst F.R. Milner L.A. Kronenberg H.M. Scadden D.T. Nature. 2003; 425: 841-846Crossref PubMed Scopus (2799) Google Scholar, 36Arai F. Hirao A. Ohmura M. Sato H. Matsuoka S. Takubo K. Ito K. Koh G.Y. Suda T. Cell. 2004; 118: 149-161Abstract Full Text Full Text PDF PubMed Scopus (1540) Google Scholar, 37Nilsson S.K. Johnston H.M. Whitty G.A. Williams B. Webb R.J. Denhardt D.T. Bertoncello I. Bendall L.J. Simmons P.J. Haylock D.N. Blood. 2005; 106: 1232-1239Crossref PubMed Scopus (605) Google Scholar, 38Heissig B. Rafii S. Akiyama H. Ohki Y. Sato Y. Rafael T. Zhu Z. Hicklin D.J. Okumura K. Ogawa H. Werb Z. Hattori K. J. Exp. Med. 2005; 202: 739-750Crossref PubMed Scopus (195) Google Scholar, 39Moore K.A. Curr. Opin. Hematol. 2004; 11: 107-111Crossref PubMed Scopus (56) Google Scholar, 40Taichman R.S. Blood. 2005; 105: 2631-2639Crossref PubMed Scopus (469) Google Scholar, 41Kiel M.J. Yilmaz O.H. Iwashita T. Terhorst C. Morrison S.J. Cell. 2005; 121: 1109-1121Abstract Full Text Full Text PDF PubMed Scopus (2414) Google Scholar, 50Balduino A. Hurtado S.P. Frazao P. Takiya C.M. Alves L.M. Nasciutti L.E. El-Cheikh M.C. Borojevic R. Cell Tissue Res. 2005; 319: 255-266Crossref PubMed Scopus (90) Google Scholar, 51Arai F. Hirao A. Suda T. Trends Cardiovasc. Med. 2005; 15: 75-79Crossref PubMed Scopus (66) Google Scholar, 52Adams G.B. Chabner K.T. Alley I.R. Olson D.P. Szczepiorkowski Z.M. Poznansky M.C. Kos C.H. Pollak M.R. Brown E.M. Scadden D.T. Nature. 2006; 439: 599-603Crossref PubMed Scopus (600) Google Scholar) and vascular (41Kiel M.J. Yilmaz O.H. Iwashita T. Terhorst C. Morrison S.J. Cell. 2005; 121: 1109-1121Abstract Full Text Full Text PDF PubMed Scopus (2414) Google Scholar, 53Kopp H.G. Avecilla S.T. Hooper A.T. Rafii S. Physiology. 2005; 20: 349-356Crossref PubMed Scopus (414) Google Scholar), are found in adult BM tissue. The vascular niche might also exist in fetal hematopoietic tissues such as yolk sac, aorta-gonad-mesonephros region, placenta, liver, and spleen (54Tavian M. Peault B. Exp. Hematol. 2005; 33: 1062-1069Abstract Full Text Full Text PDF PubMed Scopus (61) Google Scholar, 55Basto D. Trovisco V. Lopes J.M. Martins A. Pardal F. Soares P. Reis R.M. Acta Neuropathol. 2005; 109: 207-210Crossref PubMed Scopus (84) Google Scholar, 56Gekas C. Dieterlen-Lièvre F. Orkin S.H. Millola H.K.A. Dev. Cell. 2005; 8: 365-375Abstract Full Text Full Text PDF PubMed Scopus (504) Google Scholar) as well as in adult spleen and liver. Both niches may be critical for HSC self-renewal. Cooperation between these two niches might be required for maintaining normal hematopoietic homeostasis and re-establishing hematopoiesis after injury. Accumulated evidence supports the existence of an osteoblastic niche in BM. The concurrence of hematopoiesis and osteogenesis in BM suggests a close relationship between bone-forming cells and hematopoietic cells (57Patt H.M. Maloney M.A. Proc. Soc. Exp. Biol. Med. 1972; 140: 205-207Crossref PubMed Scopus (35) Google Scholar, 58Maloney M.A. Patt H.M. Proc. Soc. Exp. Biol. Med. 1975; 149: 94-97Crossref PubMed Scopus (12) Google Scholar). Early studies demonstrated that endosteal BM is more highly enriched with HSCs/progenitors compared with central BM (59Lord B.I. Testa N.G. Hendry J.H. Blood. 1975; 46: 65-72Crossref PubMed Google Scholar, 60Gong J.K. Science. 1978; 199: 1443-1445Crossref PubMed Scopus (195) Google Scholar). The facts that hematopoiesis recovery after myeloablative injury occurs on the endosteal bone surface (45Heissig B. Hattori K. Dias S. Friedrich M. Ferris B. Hackett N.R. Crystal R.G. Besmer P. Lyden D. Moore M.A. Werb Z. Rafii S. Cell. 2002; 109: 625-637Abstract Full Text Full Text PDF PubMed Scopus (1510) Google Scholar) and that the majority of HSCs/progenitors are distributed in the endosteal region after transplantation (61Nilsson S.K. Johnston H.M. Coverdale J.A. Blood. 2001; 97: 2293-2299Crossref PubMed Scopus (473) Google Scholar) support the importance of the endosteal BM microenvironment in HSC maintenance and regulation. Several genetically modulated mutant mouse models exhibit defects in hematopoiesis as a consequence of abnormal bone formation or remodeling, indicating the important role of osteoblasts in supporting HSCs in BM (62Deguchi K. Yagi H. Inada M. Yoshizaki K. Kishimoto T. Komori T. Biochem. Biophys. Res. Commun. 1999; 255: 352-359Crossref PubMed Scopus (49) Google Scholar, 63Ducy P. Zhang R. Geoffroy V. Ridall A.L. Karsenty G. Cell. 1997; 89: 747-754Abstract Full Text Full Text PDF PubMed Scopus (3630) Google Scholar, 64Gerber H.P. Vu T.H. Ryan A.M. Kowalski J. Werb Z. Ferrara N. Nat. Med. 1999; 5: 623-628Crossref PubMed Scopus (1707) Google Scholar, 65Nilsson S.K. Bertoncello I. Exp. Hematol. 1994; 22: 377-383PubMed Google Scholar, 66Begg S.K. Radley J.M. Pollard J.W. Chisholm O.T. Stanley E.R. Bertoncello I. J. Exp. Med. 1993; 177: 237-242Crossref PubMed Scopus (160) Google Scholar, 67Wang S. Wang Q. Crute B.E. Melnikova I.N. Keller S.R. Speck N.A. Mol. Cell. Biol. 1993; 13: 3324-3339Crossref PubMed Scopus (394) Google Scholar). Significant reduction in the number or functional disruption of osteoblasts leads to significant reduction in BM HSCs, and this often results in extramedullary hematopoiesis in the spleen (68Visnjic D. Kalajzic Z. Rowe D.W. Katavic V. Lorenzo J. Aguila H.L. Blood. 2004; 103: 3258-3264Crossref PubMed Scopus (598) Google Scholar). Additional trabecular bone formation and a corresponding increase in the number of osteoblasts in mice correlate with an increase in the number of BM HSCs (34Zhang J. Niu C. Ye L. Huang H. He X. Tong W.G. Ross J. Haug J. Johnson T. Feng J.Q. Harris S. Wiedemann L.M. Mishina Y. Li L. Nature. 2003; 425: 836-841Crossref PubMed Scopus (2385) Google Scholar, 35Calvi L.M. Adams G.B. Weibrecht K.W. Weber J.M. Olson D.P. Knight M.C. Martin R.P. Schipani E. Divieti P. Bringhurst F.R. Milner L.A. Kronenberg H.M. Scadden D.T. Nature. 2003; 425: 841-846Crossref PubMed Scopus (2799) Google Scholar). Moreover, osteoblastic cells support HSC self-renewal in in vitro culture (40Taichman R.S. Blood. 2005; 105: 2631-2639Crossref PubMed Scopus (469) Google Scholar) and enhance BM engraftment of HSCs in vivo when they are co-transplanted (69El-Badri N.S. Wang B.Y. Cherry Good R.A. Exp. Hematol. 1998; 26: 110-116PubMed Google Scholar) into recipient mice. Direct evidence of osteoblasts as the HSC niche has been provided in studies of several genetically modulated mouse models (35Calvi L.M. Adams G.B. Weibrecht K.W. Weber J.M. Olson D.P. Knight M.C. Martin R.P. Schipani E. Divieti P. Bringhurst F.R. Milner L.A. Kronenberg H.M. Scadden D.T. Nature. 2003; 425: 841-846Crossref PubMed Scopus (2799) Google Scholar, 36Arai F. Hirao A. Ohmura M. Sato H. Matsuoka S. Takubo K. Ito K. Koh G.Y. Suda T. Cell. 2004; 118: 149-161Abstract Full Text Full Text PDF PubMed Scopus (1540) Google Scholar, 68Visnjic D. Kalajzic Z. Rowe D.W. Katavic V. Lorenzo J. Aguila H.L. Blood. 2004; 103: 3258-3264Crossref PubMed Scopus (598) Google Scholar, 70Wilson A. Murphy M.J. Oskarsson T. Kaloulis K. Bettess M.D. Oser G.M. Pasche A.C. Knabenhans C. MacDonald H.R. Trumpp A. Genes Dev. 2004; 18: 2747-2763Crossref PubMed Scopus (587) Google Scholar, 71Katayama Y. Battista M. Kao W.M. Hidalgo A. Peired A.J. Thomas S.A. Frenette P.S. Cell. 2006; 124: 407-421Abstract Full Text Full Text PDF PubMed Scopus (1021) Google Scholar). It is worth pointing out that not all osteoblasts function as the HSC niche; we found that a subset of osteoblasts that express a high level of N-cadherin function as a key component of the osteoblastic niche (34Zhang J. Niu C. Ye L. Huang H. He X. Tong W.G. Ross J. Haug J. Johnson T. Feng J.Q. Harris S. Wiedemann L.M. Mishina Y. Li L. Nature. 2003; 425: 836-841Crossref PubMed Scopus (2385) Google Scholar). This is further supported by long-term in vitro functional studies demonstrating that an increase in N-cadherin expression in OP9 cells (a BM stromal cell line) by either retrovirus-transduced overexpression or Ang-1 induction enhances the ability of OP9 cells to support HSCs (36Arai F. Hirao A. Ohmura M. Sato H. Matsuoka S. Takubo K. Ito K. Koh G.Y. Suda T. Cell. 2004; 118: 149-161Abstract Full Text Full Text PDF PubMed Scopus (1540) Google Scholar). The existence of an N-cadherin+ osteoblastic niche has also been confirmed in several other studies. Wilson and co-workers (70Wilson A. Murphy M.J. Oskarsson T. Kaloulis K. Bettess M.D. Oser G.M. Pasche A.C. Knabenhans C. MacDonald H.R. Trumpp A. Genes Dev. 2004; 18: 2747-2763Crossref PubMed Scopus (587) Google Scholar) found that the majority of HSCs/progenitors lodge in the endosteum and attach to N-cadherin+ osteoblastic cells 15 h post-transplantation. By analyzing inducible c-Myc knock-out mice, they further demonstrated that HSCs with c-Myc mutation have increased N-cadherin expression and enhanced adhesion to osteoblastic niche cells and hence fail to release from the restrictive osteoblastic niche for activation, proliferation, and differentiation (70Wilson A. Murphy M.J. Oskarsson T. Kaloulis K. Bettess M.D. Oser G.M. Pasche A.C. Knabenhans C. MacDonald H.R. Trumpp A. Genes Dev. 2004; 18: 2747-2763Crossref PubMed Scopus (587) Google Scholar). HSCs residing in the osteoblastic niche are relatively stable during normal homeostasis but can be altered as a result of bone remodeling (72Kollet O. Dar A. Shivtiel S. Kalinkovich A. Lapid K. Sztainberg Y. Tesio M. Samstein R.M. Goichberg P. Spiegel A. Elson A. Lapidot T. Nat. Med. 2006; 12: 657-664Crossref PubMed Scopus (630) Google Scholar) or stress (71Katayama Y. Battista M. Kao W.M. Hidalgo A. Peired A.J. Thomas S.A. Frenette P.S. Cell. 2006; 124: 407-421Abstract Full Text Full Text PDF PubMed Scopus (1021) Google Scholar). Recently, Kiel et al. (73Kiel M.J. Radice G.L. Morrison S.J. Cell Stem Cell. 2007; 1: 204-217Abstract Full Text Full Text PDF PubMed Scopus (255) Google Scholar) showed that HSCs lack N-cadherin expression. Our data show, however, that not only is N-cadherin expressed by HSCs, its expression is dynamically changed when HSCs are in different states. We found that HSCs expressing intermediate to low levels of N-cadherin can successfully reconstitute the entire hematopoietic system in irradiated mice but with the latter more robust. 3Haug, J., He, X. C., Grindley, J. C., Wunderlich, J. P., Gaudenz, K. P., et al. (2008) Cell Stem Cell, in press. In addition, osteoclasts, which function in bone remodeling, have also been shown to regulate HSC migration and maintenance by clearing osteoblasts (72Kollet O. Dar A. Shivtiel S. Kalinkovich A. Lapid K. Sztainberg Y. Tesio M. Samstein R.M. Goichberg P. Spiegel A. Elson A. Lapidot T. Nat. Med. 2006; 12: 657-664Crossref PubMed Scopus (630) Google Scholar). However, depending on the severity of the mutation, a reduction in the number of osteoblasts may not compromise HSC function given that fewer HSCs would result in a reduced demand for osteoblastic niches. Nonetheless, mouse models such as UDP-galactose:ceramide galactosyltransferase-deficient (Cgt–/–) mice and Rb-and retinoic acid receptor-γ-deficient mice (71Katayama Y. Battista M. Kao W.M. Hidalgo A. Peired A.J. Thomas S.A. Frenette P.S. Cell. 2006; 124: 407-421Abstract Full Text Full Text PDF PubMed Scopus (1021) Google Scholar, 74Walkley C.R. Olsen G.H. Dworkin S. Fabb S.A. Swann J. McArthur G.A. Westmoreland S.V. Chambon P. Scadden D.T. Purton L.E. Cell. 2007; 129: 1097-1110Abstract Full Text Full Text PDF PubMed Scopus (422) Google Scholar, 75Walkley C.R. Shea J.M. Sims N.A. Purton L.E. Orkin S.H. Cell. 2007; 129: 1081-1095Abstract Full Text Full Text PDF PubMed Scopus (340) Google Scholar) have demonstrated that severe reduction in trabecular bone or osteoblast number does compromise HSC function, resulting in a reduced number of HSCs in BM (in Cgt–/– and Rb–/– mice) and/or mobilization and extramedullary hematopoiesis in the spleen, where the vascular niche is dominant, and thus setting the stage for developing into myeloid proliferative disorders (retinoic acid receptor-γ–/– and Rb–/– mice). In BM, some of the molecules produced in the intercellular matrix of the osteoblastic niche may also be important for HSC lodging and maintenance. Osteopontin, a matrix glycoprotein produced by osteoblasts, is a negative regulator of the HSC osteoblastic niche that limits the size of the stem cell pool and may provide a mechanism for restricting excess stem cell expansion under conditions of niche stimulation (76Stier S. Ko Y. Forkert R. Lutz C. Neuhaus T. Grunewald E. Cheng T. Dombkowski D. Calvi L.M. Rittling S.R. Scadden D.T. J. Exp. Med. 2005; 201: 1781-1791Crossref PubMed Scopus (532) Google Scholar). In addition, the high concentration of Ca2+ in the BM endosteal region mediates HSC homing and lodging in the osteoblastic niche by attracting HSCs through a calcium sensor receptor that is highly expressed in HSCs (52Adams G.B. Chabner K.T. Alley I.R. Olson D.P. Szczepiorkowski Z.M. Poznansky M.C. Kos C.H. Pollak M.R. Brown E.M. Scadden D.T. Nature. 2006; 439: 599-603Crossref PubMed Scopus (600) Google Scholar). Sinusoidal endothelial cells isolated from hematopoietic tissue more strongly support hematopoiesis compared with microvasculature endothelial cells from other organs (53Kopp H.G. Avecilla S.T. Hooper A.T. Rafii S. Physiology. 2005; 20: 349-356Crossref PubMed Scopus (414) Google Scholar, 77Ohneda O. Fennie C. Zheng Z. Donahue C. La H. Villacorta R. Cairns B. Lasky L.A. Blood. 1998; 92: 908-919Crossref PubMed Google Scholar, 78Aberg M.A. Aberg N.D. Palmer T.D. Alborn A.M. Carlsson-Skwirut C. Bang P. Rosengren L.E. Olsson T. Gage F.H. Eriksson P.S. Mol. Cell. Neurosci. 2003; 24: 23-40Crossref PubMed Scopus (226) Google Scholar, 79Abud H.E. Lock P. Heath J.K. Gastroenterology. 2004; 126: 1779-1787Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar). Kiel et al. (41Kiel M.J. Yilmaz O.H. Iwashita T. Terhorst C. Morrison S.J. Cell. 2005; 121: 1109-1121Abstract Full Text Full Text PDF PubMed Scopus (2414) Google Scholar) have demonstrated that HSCs attach to the endothelium of sinusoids in BM and spleen in mice after HSC mobilization and also attach to BM sinusoids during homeostasis. The discovery of a large number of long-term self-renewable HSCs in the vascular niche indicates that the BM and spleen vasculature provides a specific niche for HSC/progenitor expansion, proliferation, and differentiation under both homeostatic and stress conditions. The observation that quiescent HSCs detach from the osteoblastic niche and migrate toward the center of BM to the vascular region, where they re-establish hematopoiesis during hematopoietic regeneration after myeloablation (43Avecilla S.T. Hattori K. Heissig B. Tejada R. Liao F. Shido K. Jin D.K. Dias S. Zhang F. Hartman T.E. Hackett N.R. Crystal R.G. Witte L. Hicklin D.J. Bohlen P. Eaton D. Lyden D. de Sauvage F. Rafii S. Nat. Med. 2004; 10: 64-71Crossref PubMed Scopus (634) Google Scholar, 53Kopp H.G. Avecilla S.T. Hooper A.T. Rafii S. Physiology. 2005; 20: 349-356Crossref PubMed Scopus (414) Google Scholar, 80Rafii S. Mohle R. Shapiro F. Frey B.M. Moore M.A. Leuk. Lymphoma. 1997; 27: 375-386Crossref PubMed Scopus (133) Google Scholar), also suggests the existence of a vascular BM HSC niche. However, the fact that deletion of osteoblasts results in a reduction of HSCs in BM and extramedullary hematopoiesis (68Visnjic D. Kalajzic Z. Rowe D.W. Katavic V. Lorenzo J. Aguila H.L. Blood. 2004; 103: 3258-3264Crossref PubMed Scopus (598) Google Scholar) suggests that the vascular niche may provide a stimulator environment (81Perry J.M. Li L. Cell. 2007; 129: 1045-1047Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar). CXCL12 is a chemokine that induces cell migration through interaction with its receptor CXCR4, which is expressed by the responsive cells. CXCL12/CXCR4 signaling plays multiple essential roles in embryonic development, including HSC colonization in BM during the transition of hematopoiesis from fetal liver to BM, B cell and myeloid cell development, and blood vessel formation, as demonstrated by mutant mice with targeted gene disruption (82Ara T. Tokoyoda K. Sugiyama T. Egawa T. Kawabata K. Nagasawa T. Immunity. 2003; 19: 257-267Abstract Full Text Full Text PDF PubMed Scopus (270) Google Scholar). CXCL12/CXCR4 signaling plays important roles in HSC trafficking and HSC mobilization. Studies of CXCL12/green fluorescent protein knock-in mice (the green fluorescent protein gene knocked into the Cxcl12 locus) demonstrate that CXCL12 is expressed by a population of stromal cells scattered throughout BM (42Sugiyama T. Kohara H. Noda M. Nagasawa T. Immunity. 2006; 25: 977-988Abstract Full Text Full Text PDF PubMed Scopus (1693) Google Scholar, 44Tokoyoda K. Egawa T. Sugiyama T. Choi B.I. Nagasawa T. Immunity. 2004; 20: 707-718Abstract Full Text Full Text PDF PubMed Scopus (610) Google Scholar, 82

Referência(s)