Cdc42 acts downstream of Bazooka to regulate neuroblast polarity through Par-6–aPKC
2007; The Company of Biologists; Volume: 120; Issue: 18 Linguagem: Inglês
10.1242/jcs.014902
ISSN1477-9137
AutoresScott X. Atwood, Chiswili Chabu, Rhiannon R. Penkert, Chris Q. Doe, Kenneth E. Prehoda,
Tópico(s)Cellular Mechanics and Interactions
ResumoCdc42 recruits Par-6–aPKC to establish cell polarity from worms to mammals. Although Cdc42 is reported to have no function in Drosophila neuroblasts, a model for cell polarity and asymmetric cell division, we show that Cdc42 colocalizes with Par-6–aPKC at the apical cortex in a Bazooka-dependent manner, and is required for Par-6–aPKC localization. Loss of Cdc42 disrupts neuroblast polarity: cdc42 mutant neuroblasts have cytoplasmic Par-6–aPKC, and this phenotype is mimicked by neuroblast-specific expression of a dominant-negative Cdc42 protein or a Par-6 protein that lacks Cdc42-binding ability. Conversely, expression of constitutively active Cdc42 leads to ectopic Par-6–aPKC localization and corresponding cell polarity defects. Bazooka remains apically enriched in cdc42 mutants. Robust Cdc42 localization requires Par-6, indicating the presence of feedback in this pathway. In addition to regulating Par-6–aPKC localization, Cdc42 increases aPKC activity by relieving Par-6 inhibition. We conclude that Cdc42 regulates aPKC localization and activity downstream of Bazooka, thereby directing neuroblast cell polarity and asymmetric cell division.
Referência(s)