Revisão Revisado por pares

Unmyelinated afferent fibers are not only for pain anymore

2003; Wiley; Volume: 461; Issue: 2 Linguagem: Inglês

10.1002/cne.10691

ISSN

1096-9861

Autores

Alan R. Light, Edward R. Perl,

Tópico(s)

Neural dynamics and brain function

Resumo

Journal of Comparative NeurologyVolume 461, Issue 2 p. 137-139 Commentary Unmyelinated afferent fibers are not only for pain anymore Alan R. Light, Corresponding Author Alan R. Light [email protected] Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545Search for more papers by this authorEdward R. Perl, Edward R. Perl Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545Search for more papers by this author Alan R. Light, Corresponding Author Alan R. Light [email protected] Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545Search for more papers by this authorEdward R. Perl, Edward R. Perl Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545Search for more papers by this author First published: 25 April 2003 https://doi.org/10.1002/cne.10691Citations: 41Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat No abstract is available for this article. LITERATURE CITED Adreani CM, Kaufman MP. 1998. Effect of arterial occlusion on responses of group III and IV afferents to dynamic exercise. J Appl Physiol 84: 1827–1833. 10.1152/jappl.1998.84.6.1827 CASPubMedWeb of Science®Google Scholar Alvarez FJ, Kavookjian AM, Light AR. 1993. Ultrastructural morphology, synaptic relationships, and CGRP immunoreactivity of physiologically identified C-fiber terminals in the monkey spinal cord. J Comp Neurol 329: 472–490. 10.1002/cne.903290405 CASPubMedWeb of Science®Google Scholar Andrew D, Craig AD. 2001a. Spinothalamic lamina I neurones selectively responsive to cutaneous warming in cats. J Physiol 537: 489–495. 10.1111/j.1469-7793.2001.00489.x CASPubMedWeb of Science®Google Scholar Andrew D, Craig AD. 2001b. Spinothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch. Nat Neurosci 4: 72–77. 10.1038/82924 CASPubMedWeb of Science®Google Scholar Brown AG. 1981. Organization in the spinal cord. Berlin: Springer-Verlag. 10.1007/978-1-4471-1305-8 Google Scholar Cervero F, Iggo A. 1980. The substantia gelatinosa of the spinal cord: a critical review. Brain 103: 717–772. 10.1093/brain/103.4.717 CASPubMedWeb of Science®Google Scholar Christensen BN, Perl ER. 1970. Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. J Neurophysiol 33: 293–307. 10.1152/jn.1970.33.2.293 CASPubMedWeb of Science®Google Scholar Craig AD, Mense S. 1983. The distribution of afferent fibers from the gastrocnemius-soleus muscle in the dorsal horn of the cat, as revealed by the transport of horseradish peroxidase. Neurosci Lett 41: 233–238. 10.1016/0304-3940(83)90456-1 CASPubMedWeb of Science®Google Scholar Craig AD, Zhang ET, Blomqvist A. 1999. A distinct thermoreceptive subregion of lamina I in nucleus caudalis of the owl monkey. J Comp Neurol 404: 221–234. 10.1002/(SICI)1096-9861(19990208)404:2 3.0.CO;2-N CASPubMedWeb of Science®Google Scholar Fock S, Mense S. 1976. Excitatory effects of 5-hydroxytryptamine, histamine and potassium ions on muscular group IV afferent units: a comparison with bradykinin. Brain Res 105: 459–469. 10.1016/0006-8993(76)90593-X CASPubMedWeb of Science®Google Scholar Kaufman MP, Iwamoto GA, Longhurst JC, Mitchell JH. 1982. Effects of capsaicin and bradykinin on afferent fibers with endings in skeletal muscle. Circ Res 50: 133–139. 10.1161/01.RES.50.1.133 CASPubMedWeb of Science®Google Scholar Kaufman MP, Longhurst JC, Rybicki KJ, Wallach JH, Mitchell JH. 1983. Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. J Appl. Physiol 55: 105–112. 10.1152/jappl.1983.55.1.105 CASPubMedWeb of Science®Google Scholar Kniffki KD, Mense S, Schmidt RF. 1981. Muscle receptors with fine afferent fibers which may evoke circulatory reflexes. Circ Res 48: 25–31. CASGoogle Scholar Kumazawa T, Mizumura K. 1977. Thin-fibre receptors responding to mechanical, chemical, and thermal stimulation in the skeletal muscle of the dog. J Physiol (London) 273: 179–194. 10.1113/jphysiol.1977.sp012088 CASPubMedWeb of Science®Google Scholar Kumazawa T, Perl ER. 1978. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indications of their place in dorsal horn functional organization. J Comp Neurol 177: 417–434. 10.1002/cne.901770305 CASPubMedWeb of Science®Google Scholar Light AR. 1992. The initial processing of pain and its descending control: spinal and trigeminal systems. Basel: Karger. 10.1159/isbn.978-3-318-04053-1 Google Scholar Light AR, Perl ER. 1979. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 186: 133–150. 10.1002/cne.901860203 CASPubMedWeb of Science®Google Scholar Light AR, Trevino DL, Perl ER. 1979. Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J Comp Neurol 186: 151–171. 10.1002/cne.901860204 CASPubMedWeb of Science®Google Scholar Ling L-J, Honda T, Shimada Y, Ozaki N, Shiraishi Y, Sugiura Y. 2003. Central projection of unmyelinated (C) primary afferent fibers from gastrocnemius muscle in the guinea pig. J Comp Neurol 461: 140–150. 10.1002/cne.10619 PubMedWeb of Science®Google Scholar McCloskey DI, Mitchell JH. 1972. Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol 224: 173–186. 10.1113/jphysiol.1972.sp009887 CASPubMedWeb of Science®Google Scholar Mense S. 1993. Nociception from skeletal muscle in relation to clinical muscle pain. Pain 54: 241–289. 10.1016/0304-3959(93)90027-M CASPubMedWeb of Science®Google Scholar Mense S, Craig AD Jr. 1988. Spinal and supraspinal terminations of primary afferent fibers from the gastrocnemius-soleus muscle in the cat. Neuroscience 26: 1023–1035. 10.1016/0306-4522(88)90117-0 CASPubMedWeb of Science®Google Scholar Mense S, Schmidt RF. 1974. Activation of group IV afferent units from muscle by algesic agents. Brain Res 72: 305–310. 10.1016/0006-8993(74)90870-1 CASPubMedWeb of Science®Google Scholar Mense S, Stahnke M. 1983. Responses in muscle afferent fibres of slow conduction velocity to contractions and ischaemia in the cat. J Physiol (London) 342: 383–397. 10.1113/jphysiol.1983.sp014857 CASPubMedWeb of Science®Google Scholar Olausson H, Lamarre Y, Backlund H, Morin C, Wallin BG, Starck G, Ekholm S, Strigo I, Worsley K, Vallbo AB, Bushnell MC. 2002. Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 5: 900–904. 10.1038/nn896 CASPubMedWeb of Science®Google Scholar Sugiura Y, Lee CL, Perl ER. 1986. Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science 234: 358–361. 10.1126/science.3764416 CASPubMedWeb of Science®Google Scholar Sugiura Y, Terui N, Hosoya Y. 1989. Difference in distribution of central terminals between visceral and somatic unmyelinated (C) primary afferent fibers. J Neurophysiol 62: 834–840. 10.1152/jn.1989.62.4.834 CASPubMedWeb of Science®Google Scholar Vallbo AB, Olausson H, Wessberg J. 1999. Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol 81: 2753–2763. 10.1152/jn.1999.81.6.2753 CASPubMedWeb of Science®Google Scholar Wilson LB, Hand GA. 1997. The pressor reflex evoked by static contraction: neurochemistry at the site of the first synapse. Brain Res Brain Res Rev 23: 196–209. 10.1016/S0165-0173(96)00019-7 CASPubMedWeb of Science®Google Scholar Wilson LB, Andrew D, Craig AD. 2002. Activation of spinobulbar lamina I neurons by static muscle contraction. J Neurophysiol 87: 1641–1645. 10.1152/jn.00609.2001 CASPubMedWeb of Science®Google Scholar Woodbury CJ, Koerber HR. 2003. Widespread projections from myelinated nociceptors throughout the substantia gelatinosa provide novel insights into neonatal hypersensitivity. J Neurosci 23: 601–610. 10.1523/JNEUROSCI.23-02-00601.2003 CASPubMedWeb of Science®Google Scholar Citing Literature Volume461, Issue223 June 2003Pages 137-139 ReferencesRelatedInformation

Referência(s)