Effects of Anti‐Ig Antibodies on the Development and Differentiation of B Cells
1980; Wiley; Volume: 52; Issue: 1 Linguagem: Inglês
10.1111/j.1600-065x.1980.tb00329.x
ISSN1600-065X
AutoresMax D. Cooper, John F. Kearney, William E. Gathings, Alexander R. Lawton,
Tópico(s)Immunotherapy and Immune Responses
ResumoImmunological ReviewsVolume 52, Issue 1 p. 29-53 Effects of Anti-Ig Antibodies on the Development and Differentiation of B Cells M. D. Cooper, M. D. Cooper The Cellular Immunobiology Unit of the Tumor Institute, Department of Microbiology, and The Comprehensive Cancer Center, University of Alabama in Birmingham, Birmingham. Alabama 35294, U.S.A.Search for more papers by this authorJ. F. Kearney, J. F. Kearney The Cellular Immunobiology Unit of the Tumor Institute, Department of Microbiology, and The Comprehensive Cancer Center, University of Alabama in Birmingham, Birmingham. Alabama 35294, U.S.A.Search for more papers by this authorW. E. Gathings, W. E. Gathings The Cellular Immunobiology Unit of the Tumor Institute, Department of Microbiology, and The Comprehensive Cancer Center, University of Alabama in Birmingham, Birmingham. Alabama 35294, U.S.A.Search for more papers by this authorA. R. Lawton, A. R. Lawton The Cellular Immunobiology Unit of the Tumor Institute, Department of Microbiology, and The Comprehensive Cancer Center, University of Alabama in Birmingham, Birmingham. Alabama 35294, U.S.A.Search for more papers by this author M. D. Cooper, M. D. Cooper The Cellular Immunobiology Unit of the Tumor Institute, Department of Microbiology, and The Comprehensive Cancer Center, University of Alabama in Birmingham, Birmingham. Alabama 35294, U.S.A.Search for more papers by this authorJ. F. Kearney, J. F. Kearney The Cellular Immunobiology Unit of the Tumor Institute, Department of Microbiology, and The Comprehensive Cancer Center, University of Alabama in Birmingham, Birmingham. Alabama 35294, U.S.A.Search for more papers by this authorW. E. Gathings, W. E. Gathings The Cellular Immunobiology Unit of the Tumor Institute, Department of Microbiology, and The Comprehensive Cancer Center, University of Alabama in Birmingham, Birmingham. Alabama 35294, U.S.A.Search for more papers by this authorA. R. Lawton, A. R. Lawton The Cellular Immunobiology Unit of the Tumor Institute, Department of Microbiology, and The Comprehensive Cancer Center, University of Alabama in Birmingham, Birmingham. Alabama 35294, U.S.A.Search for more papers by this author First published: October 1980 https://doi.org/10.1111/j.1600-065X.1980.tb00329.xCitations: 71 Studies from our laboratory were supported in part by USPHS grants CA 16673 and CA 13148. awarded by the National Cancer Institute: AI 11502 and Al 14782, awarded by the National Institute of Allergy and Infectious Diseases; 5M0I-RR32from the National Institutes of Health; and grants 1–625 and 1–608. awarded by the National Foundation, March of Dimes. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES Abney, E. R., Cooper, M. D., Kearney, J. F., Lawton, A. R. & Parkhouse, R. M. E. (1978) Sequential expression of immunoglobulin on developing mouse B lymphocytes. A systematic survey which suggests a model for the generation of immunoglobulin isotype divesity. J. Immunol. 120, 2041. CASPubMedWeb of Science®Google Scholar Adler, L. T. (1975) Studies on allotype suppression and its abrogration in cultured rabbit spleen cells. Transplant. Rev. 27, 3. 10.1111/j.1600-065X.1975.tb00182.x CASPubMedWeb of Science®Google Scholar Adler, L. T., Adler, F. L., Cohen, C., Tissot, R. G. & Lancki, D. (1977) Stable chimerism induced in non-inbred rabbits by neonatal injection of spleen cells from allotype-suppressed adult donors. I. Replacement of hemopoietic tissue by donor cells. Transplantation 24, 338. 10.1097/00007890-197711000-00005 CASPubMedWeb of Science®Google Scholar Albini, B. & Wick, G. (1975) Ontogeny of lymphoid cell surface determinants in the chicken. Int. Arch. Allergy Appl. Immunol. 48, 513–529. 10.1159/000231339 CASPubMedWeb of Science®Google Scholar Aim, G. V. & Peterson, R. D. A. (1969) Antibody and immunoglobulin production at the cellular level in bursectomized-irradiated chickens. J. exp. Med. 129, 1247–1259. 10.1084/jem.129.6.1247 CASPubMedWeb of Science®Google Scholar Andersson, J., Bullock, W. W. & Melchers, F. (1974) Inhibition of mitogenic stimulation of mouse lymphocytes by anti-mouse immunoglobuMn antibodies. I. Mode of action. Eur. J. Immunol. 4, 715. 10.1002/eji.1830041103 PubMedWeb of Science®Google Scholar Antoine, J. C., Avrameas, S., Gonatas, N. K., Stieber, A. & Gonatas, J. (1974) Plasma membrane and internalized immunoglobulins of lymph node cells. Studied with conjugates of antibody on its FAB fragments with horseradish peroxidase. J. Cell. Biol. 63, 12. 10.1083/jcb.63.1.12 CASPubMedWeb of Science®Google Scholar Bazin, H., Parewels, R. & Plattean, B. (1978) Effect on rat IgA synthesis by isotypic suppression with anti-rat delta bearing chain serum. In: Adv. Exp. Med. Biol., Vol. 107, Secretory Immunity and Infection, eds. J. R. McGhee, J. Mestecky & J. L. Babb, p. 547, Plenum Press. New York . 10.1007/978-1-4684-3369-2_62 Google Scholar Blease, R. M., Weiden, P. L., Koski, I. & Dooley, N. (1974) Infectiotis agammaglobulinemia: Transmission of immunodeficiency with grafts of agammaglobulinemic cells. J. exp Med 140, 1097. 10.1084/jem.140.4.1097 PubMedWeb of Science®Google Scholar Burrows, P. D. (1978) Studies on precursors of B lymphocytes. Ph.D. Thesis, University of Alabama in Birmingham. Google Scholar Burrows, P. D., Kearney, J. F., Lawton, A. R. & Cooper, M. D. (1978) Pre-B cells: bone marrow persistence in anti-B suppressed mice, conversion to B lymphocytes, and recovery following destruction by cyelophosphamidc. J. Immunol. 120, 1526–1531. CASPubMedWeb of Science®Google Scholar Burrows, P., LeJeune, M. & Kearney, J. R. (1979) Evidence that murine pre-B cells synthesize μ heavy chains but no light chains, Nature 280, 838. 10.1038/280838a0 CASPubMedWeb of Science®Google Scholar Catty, D., Chambers, L., & Lowe, J. A. (1974) Humoral aspects of immunoglobulin allotype suppression in the rabbit. II. Effect of b locus suppression on immunoglobulin receptor-bearing lymphocytes, Immunol. 26, 331. CASPubMedWeb of Science®Google Scholar Catty, D., Lowe, J. A. & Gell, P. G. H. (1975) Mechanism of allotype suppression in the rabbit. Transplant. Rev. 37, 157. Google Scholar Chen, C. L. (1978) Ontogeny of immunoglobulin isotype diversity expressed by chicken lymphocytes. Fed. Proc. 37, 1395. Web of Science®Google Scholar Chersi, A. & Mage, R. (1973) Isolation and characterization of light chains from allotype suppressed b9 homozygous rabbits. Immunochemistry 19, 277. 10.1016/0019-2791(73)90206-1 Web of Science®Google Scholar Chiorazzi, N., Fu, S. M. & Kunkel, H. G. (1980) Stimulation of human B lymphocytes by antibodies to IgM and IgG: Functional evidence for the expression of IgG on B-lympho-cyte surface membranes. Clin. Immunol. Immunopathol. 15, 301. 10.1016/0090-1229(80)90042-2 CASPubMedWeb of Science®Google Scholar Chou, C. T., Cinader, B. & Dubiski, S. (1974) Unequal expression of all ellcallotypic specificities in circulating immunoglobulins. experimentally elicited antibodies, and receptor-carrying cells. Cell. Immunol. 11, 304. 10.1016/0008-8749(74)90029-X CASPubMedWeb of Science®Google Scholar Conley, M. E., Lawton, A. R. & Cooper, M. D. (1980) B cell expression of IgA subclasses: Ontogeny, distribution and differentiation, Clin. Res. (Abstract) In press. Google Scholar Cooper, M. D., Chain, W. A., Van Alten, P. J., & Good, R. A. (1969) Development and function of the immunoglobulin-producing system: I. Effect of bursectomy at different stages of development on germinal centers, plasma cells, immunoglobulins and antibody production. Int. Arch. Allergy Appl. Immunol. 35, 242–252. 10.1159/000230175 CASPubMedWeb of Science®Google Scholar Cooper, M. D., Kincade, P. W. & Lawton, A. R. (1971) Thymus and bursal function in immunologic development: A new theoretical model of plasma cell differentiation. In: Immunologic Incompetence, eds. B. M. Kagan & E. R. Stichm, pp. 81–104. Year Book Medical Publishers, Chicago . Web of Science®Google Scholar Cooper, M. D. & Lawton, A. R. (1974) The development of the immune system. Set Am. 231, 58. CASPubMedGoogle Scholar Cooper, M. D., Peterson, R. D. A., South, M. A. & Good, R. A. (1966) The functions of the thymus system and the bursa system in the chicken. J exp. Med. 123, 75–102. 10.1084/jem.123.1.75 CASPubMedWeb of Science®Google Scholar David, G. S. & Todd, C. W. (1969) Suppression of heavy and light chain expression in homozygous rabbits through embryo transfer. Pro. nail. Acad. Sci. (Wash.) 62, 860. 10.1073/pnas.62.3.860 CASPubMedWeb of Science®Google Scholar Dray, S. (1962) Effect of maternal isoantibodies on the quantitative expression of two allelic genes controlling y-globulin allotypic specificities. Nature (Lond.) 195, 677. 10.1038/195677a0 PubMedWeb of Science®Google Scholar Dray, S. (1972) Allotype suppression, In: Ontogeny of Acquired Immunity., ACIBA Symposium. p. 87. Assoc, Scientific Publisbers. Amsterdam . 10.1002/9780470719886.ch5 Google Scholar Dubiski, S. (1967) Suppression of the synthesis of allotypically defined immutioglobulins and compensation by another subclass of immunoglobulin. Nature (Lond.) 214, 1365. 10.1038/2141365a0 CASPubMedWeb of Science®Google Scholar Dubiski, S, & Swierczynska, S. (1971) Allotype suppression in rabbits. Operational characterization of the target cells. Int. Arch. Allergy Appl Immunol. 40, 1. 10.1159/000230392 PubMedWeb of Science®Google Scholar Dwyer, J. M., Rosenbaum, J. T. & Lewis, S. (1976) The effect of anti- suppression of μM and μC on the production of μE, J. exp. Med. 143, 781. 10.1084/jem.143.4.781 CASPubMedWeb of Science®Google Scholar Fanger, M. W., Hart, D. A., Wells, I. V. & Nisonoff, A. (1970) Requirement for cross-linkage in the stimulation of rabbit peripheral lymphocytes by anti-globulin reagents. J Immunol. 105, 1484. PubMedWeb of Science®Google Scholar Froland, S. S. & Natvig, J. B. (1972) Class, subclass and alielic exclusion of membrane-bound Ig of human B lymphocytes. J. exp. Med. 136, 409. 10.1084/jem.136.2.409 CASPubMedWeb of Science®Google Scholar Fudenberg, H. H. & Fudenberg, B. R. (1964) Antibody to hereditary human gamma globulin (Gm) factor resulting from maternal-fetal incompatibility. Science 145, 170. 10.1126/science.145.3628.170 CASPubMedWeb of Science®Google Scholar Gathings, W. E., Cooper, M. D. & Mage, R. G. (1980) Immunofluorescent studies on the expression of VH a llotypes by pre-B and B cells from honiozygous and heterozygous rabbits, Submitted for publication. Google Scholar Gathings, W. E., Lawton, A. R. & Cooper, M. D. (1977) Immunofluorescent studies of the development of pre-B cells, B lymphocytes and immunoglobulin isotype diversity in humans. fur. J. Immunol. 7, 804. 10.1002/eji.1830071112 CASPubMedWeb of Science®Google Scholar Geli, P. G. H. & Sell, S. (1965) Studies on rabbit lymphocytes in vitro. II, Induction of blast transformation with antisera to six Igallotypes and summation with mixtures of antisera to different allotypes. J exp. Med. 122, 813. 10.1084/jem.122.4.813 PubMedWeb of Science®Google Scholar Gilman-Sachs, A., Eskinazi, D. P, & Dray, S. (1977) Inheritance of idiotypes specific for antibody H or L chains. Fed. Proc. 36, 1278. Google Scholar Gilman-Sachs, A., Mage, R. G., Young, G. O., Alexander, C. & Dray, S. (1969) Identification and genetic control of two rabbit immunoglobulin allotypes at a second light chain locus, (the c locus, J, Immunol. 103, 1159. CASPubMedWeb of Science®Google Scholar Glick, B., Chang, T. S. & Jaap, R. G. (1956) The bursa of Fabricius and antibody production. Poultry Sci. 35, 224. 10.3382/ps.0350224 Web of Science®Google Scholar Gordon, J., Murgita, R. A. & Tomari, T. B., Jr. (1975) The immune response of mice treated with anti-μ antibodies: The effect on antibody-forming cells, their precursors, and helper cells assayed in vitro. J. Immunol. 114, 1808. PubMedWeb of Science®Google Scholar Grossi, C. E., Lydyard, P. M. & Cooper, M. D. (1976) B-cell ontogeny in the chicken. Ann. Immunol, (Inst. Pasteur) 127C, 931. Google Scholar Grossi, C. E., Lydyard, P. M. & Cooper, M. D. (1977) Ontogeny of B cells in the chicken. II. Changing patterns of cytoplasmic IgM expression and of modulation requirements for surface IgM by anti-μantibodies. J. Immunol. 119, 749. CASPubMedWeb of Science®Google Scholar Harriwn, M. R., Elfenbem, G. J. & Mage, R. G. (1974) Defective activation of b5-bearing lymphocytes in rabbits recovering from b5 allotype suppression. Cell. Immunol. 11, 231. 10.1016/0008-8749(74)90023-9 PubMedWeb of Science®Google Scholar Harrison, M. R., Jones, P. P, & Mage, R. G. (1973b) Endogenous synthesis of membrane b5 by lymphocytes from rabbits recovering from b5 allotype suppression. J. Immunol. 111, 1595. CASPubMedWeb of Science®Google Scholar Harrison, M. R. & Mage, R. G. (1973) Allotype suppression in the rabbit, I. The ontogeny of cells bearing Immunogtobulin of paternal allotype and the fate of these cells after treatment with anti-allotype antisera. J. exp. Med. 138, 764. 10.1084/jem.138.4.764 CASPubMedWeb of Science®Google Scholar Harrison, M. R., Mage, R. G. & Davie, J. M. (1973a) Deletion of b5immunoglobulin-bearing lymphocytes in allotype-suppressed rabbits. J. exp. Med. 137, 254. 10.1084/jem.137.2.254 CASPubMedWeb of Science®Google Scholar Hayward, A. R., Simons, M. A., Lawton, A. R., Mage, R. G. & Cooper, M. D. (1978) Pre-B and B cells in rabbits: Ontogeny and alielic exclusion of kappa light chain genes. J. exp. Med 148, 1367. 10.1084/jem.148.5.1367 CASPubMedWeb of Science®Google Scholar Herzenberg, L. A., Okumura, K., Cantor, H., Sato, V. L., Shen, F. W., Boyse, E. A. & Herzenberg, L. A. (1976) T-cell regulation of antibody responses: Demonstration of allotype-specific helper T cells and their specific removal by suppressor T cells. J. exp. Med. 144, 330. 10.1084/jem.144.2.330 PubMedWeb of Science®Google Scholar Honjo, T., & Kataoka, T. (1978) Organization of immunoglobulin heavy chain genes and allelic deletion model. Proc. natl. Acad. Sci. (USA) 75, 2140–2. 10.1073/pnas.75.5.2140 CASPubMedWeb of Science®Google Scholar Ivanyi, J., Skamene, E. & Kurisu, A. (1980) Stimulation of chicken lymphocytes in vitro of anti-immunoglobutin sera, Folia. Biol. 16, 34. Google Scholar Janeway, C. A., Jr., Murgita, R. A., Weinbaum, F. I., Asofsky, R. & Wigzell, H. (1977) Evidence for an immunoglobulin-independent antigen-specific helper T cell. Proc. nat. Acad. Sci. (USA) 74, 4582. 10.1073/pnas.74.10.4582 CASPubMedWeb of Science®Google Scholar Kearney, J. F., Cooper, M. D. & Lawton, A. R. (1976) B lymphocytes differentiation induced by lipopolysaccharide. HI, Suppression of B cell maturation by anti-mouse immunoglobulin antibodies. J. Immunol. 116, 1664. PubMedWeb of Science®Google Scholar Kearney, J. F., Klein, J., Bockman, D. F., Cooper, M. D. & Lawton, A.R. (1978) B cell differentiation induced by imopolysaccharide. V. Suppression of plasma cell maturation by anti-μ: Mode of action and characteristics of suppressed cells. J. Immunol. 120, 158. CASPubMedWeb of Science®Google Scholar Kearney, J. F. & Lawton, A. R. (1975a) B lymphocytes differentiation induced by lipopolysaccharide. I. Generation of cells synthesizing from major immunoglobulin classes. J. Immunol. 115, 671. PubMedWeb of Science®Google Scholar Kearney, J. F. & Lawton, A. R. (1975b) B lymphocyte differentiation induced by lipopolysaccharide. IL Response of fetal lymphocytes. J. Immunol. 115, 677. CASPubMedWeb of Science®Google Scholar Kearney, J. F., Lawton, A. R. & Cooper, M. D. (1977) Multiple immunoglobulin heavy chain expression by LPS-stimulated murine B lymphocytes, In: ICN-UCLA Symposium Proceedings, Immune System II, Regulation and Genetics. Vol. 8, eds, E. Sercarz, L. A. Herzen-berg & C. F. Fox, pp. 313–320. Academic Press, New York . Google Scholar Kim, B. S. & Dray, S. (1972) Identification and genetic control of allotypic specificities on two variable region subgroups of rabbit immunoglobulin heavy chains. Eur. J. Immunol. 2, 509. 10.1002/eji.1830020608 CASPubMedWeb of Science®Google Scholar Kim, B. S. & Dray, S. (1973) Expression of the a, x, and y variable region genes of heavy chains among IgG, IgM. and IgA molecules of normal and a locus allotype-suppressed rabbits. J. Immunol. 111, 750. CASPubMedWeb of Science®Google Scholar Kim, B. S. & Gilman-Sachs, A. (1974) Effect of the VHO locus allotype suppression on the expression of other closely linked genes. Fed. Proc. 33, 738. Web of Science®Google Scholar Kincade, P. W. & Cooper, M. D. (1971) Development and distribution of immunoglobulin-containing cells in the chicken: An immunofluorescent analysis using purified antibodies to f1, y and light chains J. Immunol. 106, 371–382. CASPubMedWeb of Science®Google Scholar Kincade, P. W., & Cooper, M. D. (1973) Immunoglobulin A: Site and sequence of expression in developing chicks. Science 179, 398–400. 10.1126/science.179.4071.398 CASPubMedWeb of Science®Google Scholar Kincade, P. W., Lawton, A. R., Bockman, D. E. & Cooper, M. D. (1970) Suppression of immunoglobulin G synthesis as a result of antibody-mediated suppression of immunoglobulin M synthesis in chickens. Proc. natl. Acad. Sci. 67, 1918–1925. 10.1073/pnas.67.4.1918 CASPubMedWeb of Science®Google Scholar Kincade, P. W., Self, K. S. & Cooper, M. D. (1973) Survival and function of bursa-derived cells in bursectomized chickens. Cell. Immunol. 8, 93. 10.1016/0008-8749(73)90096-8 PubMedWeb of Science®Google Scholar Kubagawa, H., Vogler, L. B., Capra, J. D., Conrad, M. E., Lawton, A. R. & Cooper, M. D. (1979) Studies on the clonal origin of multiple myeloma: Use of individually specific (idiotype) antibodies to trace the oncogenic event to its earliest point of expression in B-cell differentiation. J exp. Med. 150, 792–807. 10.1084/jem.150.4.792 CASPubMedWeb of Science®Google Scholar Landucci-Tosi, S., Mage, R. G. & Dubiski, S. (1970) Distribution of allotypic specificities Al. A2, A14 and A15 among immunoglobulin G molecules. J. Immunol. 104, 641. PubMedWeb of Science®Google Scholar Landucci-Tosi, S., Mage, R. G., Gilman-Sachs, A., Dray, S. & Knight, K. L. (1972) EFFECTS OF ANTI-Ig ANTIBODIES 51 Presence of Fc-fragment allotype determinant, A15, on IgG from an allotype-suppressed Aa2 homozygous rabbit lacking Aa2 determinants of the Fd fragment. J. Immunol. 108, 264. CASPubMedWeb of Science®Google Scholar LaDourain, N. M., Houssaint, E., Jotereau, F. V. & Belo, M. (1975) Origin of haemopoeitic stem cells in the embryonic bursa of Fabricius and bone marrow studied through interspecific chimaeras. Proc. nail. Acad. Sci. (USA) 72, 2701–2705. 10.1073/pnas.72.7.2701 Google Scholar Levitt, D. & Cooper, M. D. (1980) Mouse pre-B cells synthesize and secrete ftheavy chains but not light chains, Cell 19, 617–625. 10.1016/S0092-8674(80)80038-9 CASPubMedWeb of Science®Google Scholar Lowe, J. A. & Catty, D. (1976) Humoral and cellular aspects of immunoglobulin allotype suppression in the rabbit. IV. Kinetics of induction. Immunology. 30, 335. CASPubMedWeb of Science®Google Scholar Lowe, J. A., Cross, L. M. & Catty, D. (1973) Humoral and cellular aspects of immunoglobulin altotype suppression in the rabbit. I. Kinetics of neutralization of suppression. Immunology 25, 367. CASPubMedWeb of Science®Google Scholar Lowe, J. A., Cross, L. M. & Catty, D. (1975) Humoral and cellular aspects of immunoglobulin allotype suppression in the rabbit. III. Production of anti-allotype antibody by suppressed animals. Immunology 23, 591. Google Scholar Lucivero, G., Lawton, A. R. & Cooper, M. D. (1980a) Pokeweed mitogen-induced differentiation of human peripheral blood B lymphocytes, II, Suppression of plasma cell differentiation by heavy chain specific antibodies and development of immunoglobulin class restriction. Submitted for publication. Google Scholar Lucivero, G., Lawton, A. R., Fuks, A. & Cooper, M. D. (1980b) Pokeweed mitogen-induced differentiation of peripheral blood human B lymphocytes. 1. Surface membrane phenomena and their correlation to intracellular immunoglobulin synthesis. Submitted for publication. Google Scholar Lydyard, P. M., Grossi, C. E. & Cooper, M. D. (1976) Ontogeny of B cells in the chicken. I. Sequential development of clonal diversity in the bursa. J. exp. Med. 144, 79–97. 10.1084/jem.144.1.79 PubMedWeb of Science®Google Scholar Mage, R. G. (1967) Quantitative studies on the regulation of expression of genes for immunoglobulin allotypes in heterozygous rabbits. Cold Spring Harbor Symp. Quant. Biol. 32, 203. 10.1101/SQB.1967.032.01.028 CASWeb of Science®Google Scholar Mage, R. G., (1974a) Altered quantitative expression of immunoglobulin allotypes in rabbits, In: Curr. Top. Microbiol Immunol., Vol. 63. ed. N. Jerne, p. 131. Springer-Verlag, Heidelberg . Google Scholar Mage, R. G. (1974b) Remarks on allotype suppression in rabbits. In: Immunological Tolerances. Mechanisms and Potential Therapeutic Applications, eds. D. H. Katz & B Benacerraf, p. 531. Academic Press, New York . Google Scholar Mage, R. G. (1975) Allotype suppression in rabbits: effects of anti-allotype antisera upon expression of immunoglobulin genes. Transplant. Rev. 11, 84. Google Scholar Mage, R. & Dray, S. (1965) Persistent altered phenotypic expression of allelic μG-immunoglobulin allotypes in heterozygous rabbit exposed to isoantibodies in fetal and neonatal life, J. Immunol. 95, 525. CASPubMedGoogle Scholar Mage, R., & Dray, S. (1966) Persistence of altered expression of alielic μG-immunoglobulin allotypes in an allotype-suppressed rabbit after immunization. Nature (Lond.) 212, 699. 10.1038/212699a0 CASWeb of Science®Google Scholar Mage, R. G., Lieberman, R., Potter, M. & Terry, W. D. (1973) Immunoglobulinallotypes. In: The Antigens. Vol. 1. ed. M. Selia, p. 229. Academic Press. New York . Google Scholar Mage, R. G., Young-Cooper, G. O. & Alexander, C. (1971) Genetic control of variable and constant regions of immunoglobulin heavy chains. Nature (Lond.) 230, 73. Google Scholar Mage, R. G., Young, G. O, & Dray, S. (1967) An effect upon the regulation of gene expression: Allotype suppression at the a locus in heterozygous offspring of immunized rabbits, J. Immunol. 98, 502. CASPubMedWeb of Science®Google Scholar Mage, R. G., Young, G. O., Rejnek, J., Reisfeld, R. A., Dubiski, S. & Appella, E. (1970) The quantitative expression, genetics, and chemistry of allotypes, types and subtypes of rabbit light polypeptide chains. In: Protides of the Biological Fluids, ed. H. Peeters, p. 215. Pergamon Press, Oxford , New York . Google Scholar Maniatis, G. M., Steiner, L. A. & Ingram, V. M. (1969) Tadpole antibodies against frog hemoglobin and their effect on development. Science 165, 67–69. 10.1126/science.165.3888.67 CASPubMedWeb of Science®Google Scholar Manning, D. D. (1972) Induction of temporary IgA deficiency in mice injected with hetero-logous anti-heavy chain antiserum. J. Immunol. 109, 1152. CASPubMedWeb of Science®Google Scholar Manning, D. D., (1975) Heavy chain isotype suppression: A review of the immunosuppressive effects of heterologous anti-Ig heavy chain antisera. J. Retaiculnendothel. Soc. 18, 63–86. PubMedWeb of Science®Google Scholar Manning, D. D. & Jutila, J. W. (1972a) Immunosuppression in mice injected with heteroiogous anti-immunoglobulin antisera. J. Immunol. 108, 282. CASPubMedWeb of Science®Google Scholar Manning, D. D., & Jutila, J. W. (1972b) Immunosuppression of mice injected with heterologous anti-immunoglobulin heavy chain antisera. J. exp. Med. 135, 1316. 10.1084/jem.135.6.1316 CASPubMedWeb of Science®Google Scholar Manning, D. D., & Jutila, J. W. (1972c) Effect of anti-immunoglobulin antisera on homo-graft rejection in mice. Nature 237, 58. 10.1038/237181b0 CASPubMedWeb of Science®Google Scholar Manning, D. D., Manning, J. K. & Reed, N. D. (1976) Suppression of reagenic antibody (IgE) formation in mice by treatment with anti-μ antiserum. J. exp. Med. 144, 288. 10.1084/jem.144.1.288 PubMedWeb of Science®Google Scholar Martin, L. N., & Leslie, G. A. (1974) IgM-forming cells as the immediate precursor of IgA-producing cells during ontogeny of the immunoglobulin-producing system of the chicken. 7. Immunol. 113, 120. CASPubMedWeb of Science®Google Scholar Metcalf, E. S. & Klinman, N. R. (1976) In vitro tolerance reduction of neonatal murine B cells, J exp. Med 143, 1327. 10.1084/jem.143.6.1327 PubMedWeb of Science®Google Scholar Mole, L. E., Geiner, M. D. & Koshland, M. E. (1975) The isolation and characterization of the VH domain from rabbit heavy chains of different a locus allotype, J. Immunol. 114, 1442. CASPubMedWeb of Science®Google Scholar Möller, G. (1961) Demonstration of mouse isoantigens at the cellular level by the fluoresceni antibody technique, J. exp. Med. 114, 415–432. 10.1084/jem.114.4.415 CASPubMedWeb of Science®Google Scholar Murgita, R., Mattioli, C. & Tomasi, T. B. (1973) Production of a runting syndrome and selective IgA deficiency in mice by the administration of anti-heavy chain antisera. J exp. Med 138, 209. 10.1084/jem.138.1.209 CASPubMedWeb of Science®Google Scholar Nossal, G. J. V. & Pike, B. L. (1973) Studies on the differentiation of B lymphocytes in the mouse. Immunology 25, 33. CASPubMedWeb of Science®Google Scholar Oppenheim, J. J., Rogentine, G. N. & Terry, W. D. (1969) The transformation of human lymphocytes by monkey antisera to human immunoglobulins. Immunology 16, 123. CASPubMedWeb of Science®Google Scholar Pernis, B., Chiappino, G., Kelus, A. & Gell, P. (1965) Cellular localization of immunoglobulins with different allotypic specificities in rabbit lymphoid tissues. J. exp. Med. 122, 853. 10.1084/jem.122.5.853 CASPubMedWeb of Science®Google Scholar Pernis, B., Forni, L., Dubiski, S., Kelus, A. S., Mandy, W. J, & Todd, C. W. M. (1973) Heavy chain variable and constant region allotypes in single rabbit plasma cells, Immunochemistry 10, 281. 10.1016/0019-2791(73)90023-2 CASPubMedWeb of Science®Google Scholar Pierce, C. W., Solliday, S. M. & Asofsky, R. (1972a) Immune response in vitro, IV, Suppression of primary μM. μG and μA. plaque-forming cell reponses in mouse spleen cell cultures by class specific antibody to mouse immunoglobulins, J. exp. Med. 135, 675. 10.1084/jem.135.3.675 CASPubMedWeb of Science®Google Scholar Pierce, C. W., Solliday, S. M., & Asofsky, R. (1972b) Immune responses in vitro. V. Suppression of μM, μG or μA plaque-forming cell responses in cultures of primed mouse spleen cells by class specific antibody to mouse immunoglobulins, J. exp. Med. 135, 698. 10.1084/jem.135.3.698 CASPubMedWeb of Science®Google Scholar Rabbitts, T. H., Forster, A., Dunnick, W. & Bentley, D. L. (1980) The role of gene deletion in the immunoglobulin heavy chain switch. Nature 283, 351. 10.1038/283351a0 CASPubMedWeb of Science®Google Scholar Raff, M. C., Owen, J. J. T., Cooper, M. D., Lawton, A. R., Megson, M. & Gathings, W. (1975) Differences in susceptibility of mature and immature mouse B lymphocytes to anti- EFFECTS OF ANTI-Ig ANTIBODIES 53 immunoglobulin induced immunoglobulin suppression in vitro. Possible implications for B cell tolerance to self, J. exp. Med. 142, 1052. 10.1084/jem.142.5.1052 PubMedWeb of Science®Google Scholar Raff, M. C., Megson, M., Owen, J. J. T. & Cooper, M. D. (1976) Early production of intra-cellular IgM by B-lymphocyle precursors in mouse. Nature 259, 224. 10.1038/259224a0 CASPubMedGoogle Scholar Schreiner, G. E. & Unanue, E. R. (1976) Membrane and cytoplasmic changes in B lymphocytes induced by ligand-surface immunoglobin interaction. Adv. Immunol. 24, 37. 10.1016/S0065-2776(08)60329-6 CASPubMedGoogle Scholar Schuffler, C. & Dray, S. (1974a) In vitro immunoglobulin allotype synthesis by spleen cells of heterozygous rabbits, Specific suppression by anti-allotype antibody. Cell Immunol, 10, 267. 10.1016/0008-8749(74)90118-X CASPubMedWeb of Science®Google Scholar Schuffler, C. & Dray, S. (1974b) In vitro suppression of immunoglobulin allotype synthesis by Fab and F9ab′)2 fragments of anti-allotype antibody, Cell. Immunol. 11, 367. 10.1016/0008-8749(74)90035-5 CASPubMedWeb of Science®Google Scholar Schuffler, C. & Dray, S. (1974c) In vitro suppression of immunoglobulin allotype sym THESIS by antibody specific for heavy chain determinants, Cell. Immunol. II, 377. 10.1016/0008-8749(74)90036-7 Web of Science®Google Scholar Sell, S. (1967) Studies on rabbil lymphocytes in vitro. V, The induction of blast transformation with sheep antisera TO IgG sub-units. J. exp. Med. 125, 289. 10.1084/jem.125.2.289 CASPubMedWeb of Science®Google Scholar Sell, S. (1975) A speculative comparison of allotypic suppression and allotypic blast trans- formation: Control of expression of T and B cell immunoglobulin allotypic markers by a B cell product. Transplant. Rev. 27, 135. 10.1111/j.1600-065X.1975.tb00187.x CASPubMedWeb of Science®Google Scholar Sell, S., Mascari, R. A. & Hughes, S. J. (1970) Studies on rabbit lymphocytes in vitro. XIII, The induction of blast transformation with the F(ab′); and Fab fragments of anti- lymphocytic, anti-IgG and anti-allotypic globulins, J Immunol. 105, 1400. PubMedWeb of Science®Google Scholar Sell, S., Rowe, D. S. & Gell, P. G. H. (1965) Studies of rabbit lymphocytes in vitro. Ill, Protein, RNA and DNA synthesis of lymphocyte cultures after stimulation with phytohemagglutinin, staphylococcal filtrate, anti-allotype serum and heterologous anti- serum to rabbit whole serum, J. exp. Med. 122, 823. 10.1084/jem.122.4.823 CASPubMedWeb of Science®Google Scholar Shek, P. N. & Dubiski, S. (1975) Allotypic suppression in rabbits: Competition for target cell receptors between isologous and heterologous antibody and between native antibody and antibody fragments., J. Immunol. 122, 621. Google Scholar Siden, E. J., Baltimore, D., Clark, D. & Rosenberg, N. E. (1979) Immunoglobulin synthesis by lymphoid cells transformed in vitro by Abelson murine leukemia virus, Cell 16, 389. 10.1016/0092-8674(79)90014-X CASPubMedWeb of Science®Google Scholar Sidman, G. L. & Unanue, E. R. (1975) Receptor mediated inactivation of early B lymphocytes. Nature 257, 149. 10.1038/257149a0 CASPubMedWeb of Science®Google Scholar Simons, M. A., Hayward, A. R., Gathings, W. E., Lawton, A. R., Young-Cooper, G., Cooper, M. D. & Muge, R.G. (1979) Expression of b4 and b5 kappa light chain allotypes by Band pre-B cells in allotype-suppressed and neutralized rabbits. Eur. J. Immunol., in press. 10.1002/eji.1830091110 PubMedWeb of Science®Google Scholar Vice, J. L., Hunt, W. L. & Dray, S. (1969) Zygote transfer to facilitate altered expression of immunoglobulin light chain phenotypes in homozygous rabbits, Proc. Soc. Exp. Biol. (N.Y.) 130, 730. 10.3181/00379727-130-33643 CASPubMedWeb of Science®Google Scholar Wu, L. Y. F., Blanco, A., Cooper, M. D. & Lawton, A. R. (1976) Ontogeny of B-lymphocyte differentiation induced by pokeweed mitogen, Clin. Immunol. Immunopathol. 5, 208. 10.1016/0090-1229(76)90026-X PubMedWeb of Science®Google Scholar Young-Cooper, G. O., & Mage, R. G. (1974) Neutralization of allotype suppression in rabbits. Immunology 26, 809. CASPubMedWeb of Science®Google Scholar Yount, W. J., Fuller, C. R. & Simmons, J. G. (1980) Distribution of IgG subclasses in human B lymphocytes: Evidence for dual expression of subclasses on surface and cytoplasmic IgG in minor B lymphocyte subpopulation., J. Immunol. 124, 431. CASPubMedWeb of Science®Google Scholar Citing Literature Volume52, Issue1October 1980Pages 29-53 ReferencesRelatedInformation
Referência(s)