Translocation of proteins across the membrane of the endoplasmic reticulum: A place for Saccharomyces cerevisiae
1993; Wiley; Volume: 9; Issue: 5 Linguagem: Inglês
10.1002/yea.320090502
ISSN1097-0061
Autores Tópico(s)Toxin Mechanisms and Immunotoxins
ResumoYeastVolume 9, Issue 5 p. 441-463 Article Translocation of proteins across the membrane of the endoplasmic reticulum: A place for Saccharomyces cerevisiae Germán Larriba, Germán Larriba Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, SpainSearch for more papers by this author Germán Larriba, Germán Larriba Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, SpainSearch for more papers by this author First published: May 1993 https://doi.org/10.1002/yea.320090502Citations: 14AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Ainger, K. J. and Meyer, D. I. (1986) Translocation of nascent presecretory proteins across membranes can occur late in translation. EMBO J. 5, 951–955. 2 Allison, D. S. and Young, E. T. (1988). Single amino-acid substitutions within the signal sequence of yeast prepro-α-factor affect membrane translocation. Mol. Cell. Biol. 8, 1915–1922. 3 Allison, D. S. and Young, E. T. (1989). Mutations in the signal sequence of prepro-α-factor inhibit both translocation into the endoplasmic reticulum and processing by signal peptidase in yeast cells. Mol. Cell. Biol. 9, 4977–4985. 4 Amaya, Y. and Nakano, A. (1991). SRH1 protein, the yeast homologue of the 54 kDa subunit of signal recognition particle, is involved in ER translocation of secretory proteins. FEBS Lett. 283, 325–328. 5 Amaya, Y., Nakano, A., Ito, K. and Mouri, M. (1990). Isolation of a yeast gene, SRH1, that encodes a homologue of the 54K subunit of signal recognition particle. J. Biochem. 107, 457–463. 6 Ammerer, G., Hunter, C., Rothman, J. H., Saari, G. C., Valls, L. A. and Stevens, T. H. (1986). PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors. Mol. Cell. Biol. 6, 2490–2499. 7 Andrews, D. W., Perara, E., Lesser, C. and Lingappa, V. R. (1988). Sequences beyond the cleavage site influence signal peptide function. J. Biol. Chem. 263, 15791–15798. 8 Babu, Y. S., Bugg, C. E. and Cook, W. J. (1988). Structure of calmodulin refined at 2.2 A resolution. J. Mol. Biol. 204, 191–204. 9 Bajwa, W., Meyhack, B., Rudolph, H., Schweingrueber, A. M. and Hinnen, A. (1984). Structural analysis of the two tandemly repeated acid phosphatase genes in yeast. Nucleic Acids Res. 12, 7721–7739. 10 Baker, R. K., Bentivoglio, G. P. and Lively, M. O. (1986). Partial purification of microsomal signal peptidase from hen oviduct. J. Cell. Biochem. 32, 11193–11200. 11 Baker, R. K. and Lively, M. O. (1987). Purification and characterization of microsomal signal peptidase from hen oviduct. Biochemistry 26, 8561–8567. 12 Bankaitis, V. A., Ramussen, B. A. and Bassford, P. J., Jr. (1984). Intragenic mutations that restore export of maltose binding protein with a truncated signal peptide. Cell 37, 243–252. 13 Basco, R., Giménez-Gallego, G. and Larriba, G. (1990). Processing of yeast exoglucanase (β-glucosidase) in a KEX2-dependent manner. FEBS Lett. 268, 99–102. 14 Benson, S. A., Hall, M. N. and Silhavy, T. J. (1985). Genetic analysis of protein export in Escherichia coli K12. Ann. Rev. Biochem. 54, 101–134. 15 Bergh, M. L. E., Cepko, C. L., Wolf, D. and Robbins, P. H. (1987). Expression of the Saccharomyces cerevisiae glycoprotein invertase in mouse fibroblasts: glycosylation, secretion, and enzymatic activity. Proc. Natl. Acad. Sci. USA 84, 3570–3574. 16 Bernstein, H. D., Portiz, M. A., Strub, K., Hoben, P. J., Brenner, S. and Walter, P. (1989). Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle. Nature 340, 482–486. 17 Bird, P., Gething, M. J. and Sambrook, J. (1987). Translocation in yeast and mammalian cells: not all signals are functionally equivalent. J. Biol. Chem. 105, 2905–2914. 18 Blachly-Dyson, E. and Steven, T. H. (1987). Yeast carboxypeptidase Y can be translocated and glycosylated without its amino-terminal sequence. J. Cell. Biol. 104, 1183–1191. 19 Blobel, G. and Dobberstein, B. (1975). Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 67, 835–851. 20 Blobel, G. and Sabatini, D. D. (1971). Ribosome membrane interaction in eukaryotic cells. In L. A. Manson (Ed.), Biomembranes: 2. Plenum Publishing Corporation, New York, London, pp. 193–195. 21 Böhni, P. C., Deshaies, R. J. and Schekman, R. W. (1988). SEC11 is required for signal peptide processing and yeast cell growth. J. Cell Biol. 106, 1035–1042. 22 Bordallo, C., Bordallo, S., Gascón, S. and Suárez-Rendueles, P. (1991). Molecular cloning and sequencing of genomic DNA encoding yeast vacuolar carboxypeptidase yscS. FEBS Lett. 283, 27–32. 23 Borgese, N., Mok, W., Kreibich, G. and Sabatini, D. D. (1974). Ribosomal-membrane interaction: in vitro binding of ribosomes to microsomal membranes. J. Mol. Biol. 8, 559–580. 24 Bostian, K., Elliott, Q., Bussey, H., Burn, V., Smith, A. and Tipper, D. J. (1984). Sequence of the preprotoxin dsRNA gene of type I killer yeast: multiple processing events produce a two-component toxin. Cell 36, 741–751. 25 Brenwald, P., Liao, X., Holm, Porter, G. and Wise, J. A. (1988). Identification of an essential Schizosaccharomyces pombe RNA homologous to the 7SL component of signal recognition particle. Mol. Cell. Biol. 8, 1580–1590. 26 Bussey, H. (1988). Proteases and the processing of precursors to secreted proteins in yeast. Yeast 4, 17–26. 27 Byström, A. S., Hjalmarsson, K. J., Wikström, P. M. and Björk, B. R. (1983). The nucleotide sequence of an Escherichia coli operon containing genes for the tRNA(m1G)methyltransferase, the ribosomal proteins S16 and L19 and a 21-K polypeptide. EMBO J. 2, 899–905. 28 Caulifield, M. P., Duong, L. T. and Rosenblatt, M. (1986). Demonstration of post-translational secretion of human placental lactogen by a mammalian in vitro translation system. J. Biol. Chem. 261, 10953–10956. 29 Chang, Y.-H. and Smith, J. A. (1989). Molecular cloning and sequencing of genomic DNA encoding aminopeptidase I from Saccharomyces cerevisiae. J. Biol. Chem. 264, 6979–6983. 30 Chao, C. C., Bird, P., Gething, M. J. and Sambrook, J. (1987). Post-translational translocation of influenza virus hemagglutinin across microsomal membranes. Mol. Cell. Biol. 7, 3842–3845. 31 Chirico, W. J., Waters, M. G. and Blobel, G. (1988). 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332, 805–810. 32 Cioffi, J. A., Allen, K. L., Lively, M. O. and Kemper, B. (1989). Parallel effects of signal peptide hydrophobic core modifications on co-translational translocation and post-translational cleavage by purified signal peptidase. J. Biol. Chem. 264, 15052–15058. 33 Cobon, G. S., Crowfoot, P. D. and Linnane, A. W. (1974). Biogenesis of mitochondria. Phospholipid synthesis in vitro by yeast mitochondria and microsomal fraction. Biochem. J., 144, 265–275. 34 Collins, P. G. and Gilmore, R. (1991). Ribosome binding to the endoplasmic reticulum: a 180-kD protein identified by crosslinking to membrane-bound ribosomes is not required for binding activity. J. Cell Biol. 114, 639–649. 35 Connoly, T. and Gilmore, R. (1986). Formation of a functional ribosome-membrane junction during translocation requires the participation of a GTP-binding protein. J. Cell Biol. 103, 2253–2261. 36 Connoly, T. and Gilmore, R. (1989). The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 57, 599–610. 37 Connoly, T., Rapiejko, P. J. and Gilmore, R. (1991). Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor. Science 2, 1171–1173. 38 Cueva, R., García-Alvarez, N. and Suárez-Rendueles, P. (1989). Yeast vacuolar aminopeptidase yscl: isolation and regulation of the APE1 (LAP4) structural gene. FEBS Lett. 259, 125–129. 39 Dalbey, R. E. and Wickner, W. (1985). Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J. Biol. Chem. 260, 15925–15931. 40 Davis, W. C. and Model, P. (1985). An artificial anchor domain: hydrophobicity suffices to stop transfer. Cell 41, 607–614. 41 Dennis, E. A. and Kennedy, E. P. (1972). Intracellular sites of lipid synthesis and the biogenesis of mitochondria. J. Lipid Res. 13, 263–267. 42 Deshaies, R. J., Koch, B. D. and Schekman, R. (1988). The role of stress proteins in membrane biogenesis. Trends Biochem. Sci. 13, 384–388. 43 Deshaies, R. J., Koch, B. D., Werner-Washburne, M., Craig, E. A. and Schekman, R. (1988). A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332, 800–805. 44 Deshaies, R. J., Sanders, S. L., Feldheim, D. A. and Schekman, R. (1991). Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature 349, 806–808. 45 Deshaies, R. J. and Schekman, R. (1987). A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J. Cell Biol. 105, 633–645. 46 Deshaies, R. J. and Schekman, R. (1989). SEC62 encodes a putative membrane protein required for protein translocation into the endoplasmic reticulum. J. Cell Biol. 109, 2653–2664. 47 Deshaies, R. J. and Schekman, R. (1990). Structural and functional dissection of Sec62p, a membrane-bound component of the yeast endoplasmic reticulum protein import machinery. Mol. Cell. Biol. 10, 6024–6035. 48 Dev, I. K. and Ray, P. H. (1990). Signal peptide and signal peptide hydrolases. J. Bioenerg. Biomembr. 22, 271–290. 49 Duong, L. T., Caulifield, M. P. and Rosenblatt, M. (1987). Synthetic signal peptide and analogs display different activities in mammalian and plant in vitro secretion systems. J. Biol. Chem. 262, 6328–6333. 50 Emter, O., Mechler, B., Achstetter, T., Muller, H. and Wolf, D. F. (1983). Yeast pheromone α-factor is synthesized as a high molecular weight precursor. Biochem. Biophys. Res. Commun. 116, 822–829. 51 Engelman, D. M. and Steitz, T. A. (1981). The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 23, 411–422. 52 Evans, E. A., Gilmore, R. and Blobel, G. (1986). Purification of microsomal signal peptidase as a complex. Proc. Natl. Acad. Sci. USA 83, 581–585. 53 Feldheim, D., Rothblatt, J. and Schekman, R. (1992). Topology and functional domains of sec63p, an ER membrane protein required for secretory protein translocation. Mol. Cell. Biol. 12, 3288–3296. 54 Felici, F., Cesarini, G. and Hughes, J. M. X. (1989). The most abundant small cytoplasmic RNA of Saccharomyces cerevisiae has an important function required for normal cell growth. Mol. Cell. Biol. 9, 3260–3268. 55 Freedman, R. B. (1989). Protein disulfide isomerase: multiple roles in the modification of nascent secretory proteins. Cell 57, 1069–1072. 56 García, P. D. and Walter, P. (1988). Full-length prepro-α-factor can be translocated across the mammalian microsomal membrane only if translation has not terminated. J. Cell. Biol. 106, 1043–1048. 57 Gething, M.-J. and Sambrook, J. (1992). Protein folding in the cell. Nature 355, 33–45. 58 Gierash, L. M. (1989). Signal sequences. Biochemistry 28, 923–930. 59 Gilmore, R. and Blobel, G. (1985). Translocation of secretory protein across the microsomal membrane occurs through an environment accessible to aqueous perturbants. Cell 42, 497–505. 60 Gilmore, R., Blobel, G. and Walter, P. (1982a). Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J. Cell Biol. 95, 463–469. 61 Gilmore, R., Walter, P. and Blobei, G. (1982b). Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J. Cell Biol. 95, 470–477. 62 Görlich, D., Prehn, S., Hartmann, E., Herz, J., Otto, A., Kraft, R., Wiedman, M., Knespel, S., Dobberstein, B. and Rapoport, T. A. (1990). The signal sequence receptor has a second subunit and is part of a translocation complex in the endoplasmic reticulum as probed by bifunctional reagents. J. Biol. Chem. 111, 2283–2294. 63 Görlich, D., Hartmann, E., Prehn, S. and Rapoport, T. A. (1992). A protein of the endoplasmic reticulum involved in polypeptide translocation. Nature 357, 47–52. 64 Green, N., Fang, H. and Walter, P. (1992). Mutants in three novel complementation groups inhibit membrane protein insertion into and soluble protein translocation across the endoplasmic reticulum membrane of Saccharomyces cerevisiae. J. Cell Biol. 116, 597–604. 65 Greenburg, G., Shelness, G. S. and Blobel, G. (1989). A subunit of mammalian signal peptidase is homologous to yeast SEC11 protein. J. Biol. Chem. 264, 15762–15765. 66 Haguenauer-Tsapis, R. and Hinnen, A. (1984). A deletion that includes the signal peptidase cleavage site impairs processing, glycosylation and secretion of cell surface yeast acid phosphatase. Mol. Cell. Biol. 4, 2668–2675. 67 Haguenauer-Tsapis, R., Nagy, M. and Ryter, A. (1986). A deletion that includes the segment for the signal peptidase cleavage site delays release of Saccharomyces cerevisiae acid phosphatase from the endoplasmic reticulum. Mol. Cell. Biol. 6, 723–729. 68 Hann, B. C., Poritz, M. A. and Walter, P. (1989). Saccharomyces cerevisiae and Schizosaccharomyces pombe contain a homologue to the 54-kD subunit of the signal recognition particle that in S. cerevisiae is essential for growth. J. Cell Biol. 109, 3223–3230. 69 Hann, B. C., Stirling, C. J. and Walter, P. (1992). SEC65 gene product is a subunit of the yeast signal recognition particle required for its integrity. Nature 356, 532–534. 70 Hann, B. C. and Walter, P. (1991). The signal recognition particle in S. cerevisiae. Cell 67, 131–144. 71 Hansen, W., García, P. D. and Walter, P. (1986). In vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent post-translational translocation of the prepro-α-factor. Cell 45, 397–406. 72 Hansen, W. and Walter, P. (1988). Prepro-carboxy-peptidase Y and a truncated form of invertase, but not full-length pre-invertase, can be posttranslationally translocated across microsomal vesicle membranes from Saccharomyces cerevisiae. J. Cell Biol. 106, 1075–1081. 73 Hartmann, Wiedman, M. and Rapoport, T. A. (1989). A membrane component of the endoplasmic reticulum that may be essential for protein translocation. EMBO J. 8, 2225–2229. 74 He, F., Beckerich, J. M. and Gaillardin, C. (1992). A mutant of 7SL RNA in Yarrowia lipolytica affecting the synthesis of a secreted protein. J. Biol. Chem. 267, 1932–1937. 75 High, S. and Dobberstein, B. (1991). The signal sequence interacts with the methionine-rich domain of the 54-kD protein of signal recognition particle. J. Cell Biol. 113, 229–233. 76 Hightower, L. E. (1991). Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66, 191–197. 77 Hikita, C. and Mizushima, S. (1992). Effects of total hydrophobicity and length of the hydrophobic domain of a signal peptide on the in vitro translocation efficiency. J. Biol. Chem. 267, 4882–4888. 78 Hirschberg, C. B. and Snider, M. D. (1987). Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Ann. Rev. Biochem. 56, 63–87. 79 Hortsch, M., Avossa, D. and Meyer, D. I. (1986). Characterization of secretory protein translocation: ribosome-membrane interaction in endoplasmic reticulum. J. Cell Biol. 103, 241–253. 80 Hortsch, M., Labeit, S. and Meyer, D. I. (1988). Complete cDNA sequence coding for human docking protein. Nucl. Acids Res. 16, 361–362. 81 Hurt, E. C. and Schatz, G. (1987). A cytosolic protein contains a cryptic mitochondrial targeting signal. Nature 325, 499–503. 82 Ichihara, S., Susuki, T., Susuke, M. and Mizushima, S. (1986). Molecular cloning and sequencing of the sppA gene and characterization of the encoded protease IV, a signal peptide peptidase, of Escherichia coli. J. Biol. Chem. 261, 9405–9411. 83 Ingolia, T. D., Slater, M. R. and Craig, E. A. (1982). Saccharomyces cerevisiae contains a complex multigene family related to the major heat shockinducible gene of Drosophila. Mol. Cell. Biol. 2, 1388–1398. 84 Johnson, L. M., Bankaitis, V. A. and Emr, S. D. (1987). Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protein. Cell 48, 875–885. 85 Julius, D., Brake, L., Bair, L., Kunisawa, R. and Thorner, J. (1984). Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for the processing of yeast prepro-α-factor. Cell 37, 1075–1089. 86 Kaiser, C. A. and Botstein, D. (1990). Efficiency and diversity of protein localization by random signal sequences. Mol. Cell. Biol. 10, 3163–3173. 87 Kaiser, C. A., Preuss, D., Grisafi, P. and Botstein, D. (1987). Many random sequences functionally replace the secretion signal sequence of yeast invertase. Science 235, 312–317. 88 Kellaris, K. V., Bowen, S. and Gilmore, R. (1991). ER translocation intermediates are adjacent to a nonglycosylated 34-kD integral membrane protein. J. Cell Biol. 114, 21–33. 89 Kelleher, D. J., Kreibich, G. and Gilmore, R. (1992). Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48kd protein. Cell 69, 55–65. 90 Klionsky, D. J., Brusilow, W. S. A. and Simoni, R. D. (1988). Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information. Mol. Cell. Biol. 8, 2105–2116. 91 Klionsky, D. J., Cueva, R. and Yaver, D. S. (1992). Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J. Cell Biol. 119, 287–299. 92 Klionsky, D. J., Herman, P. K. and Emr, S. (1990). The fungal vacuole: composition, function, and biogenesis. Microbiol. Rev. 54, 266–292. 93 Krebs, H. O., Hoffschulte, H. K. and Müller, M. (1989). In vitro studies on the translocation of acid phosphatase into the endoplasmic reticulum of the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 181, 323–329. 94 Krieg, U. C., Johnson, A. E. and Walter, P. (1989). Protein translocation across the endoplasmic reticulum membrane: identification by photocross-linking of a 39-kD integral membrane glycoprotein as part of a putative translocation tunnel. J. Cell Biol. 109, 2033–2043. 95 Krieg, U. C., Walter, P. and Johnson, A. E. (1986). Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle. Proc. Natl. Acad. Sci. USA 83, 8604–8608. 96 Kuchler, K., Danm, G. and Paltauf, F. (1986). Subcellular and mitochondrial localization of phospholipid-synthesizing enzymes in Saccharomyces cerevisiae. J. Bacteriol. 165, 901–910. 97 Kukuruzinska, M. A., Berg, M. L. E. and Jackson, B. J. (1987). Protein glycosylation in yeast. Ann. Rev. Biochem. 56, 915–944. 98 Kurihara, T. and Silver, P. (1992). NPL1/SEC63, a protein involved in nuclear localization and ER translocation. Abstracts of Mid-Atlantic Yeast Meeting, pp. 42, Baltimore, Md. 99 Kurjan, J. and Herskowitz, I. (1982). Structure of a yeast pheromone gene (MFα): A putative α-factor precursor contains four tandem copies of mature α-factor. Cell 30, 933–943. 100 Kurzchalia, T. V., Wiedmann, M., Girshovich, A. S., Bochkareva, E. S., Bielka, H. and Rapoport, T. A. (1986). The signal sequence of nascent preprolactin interacts with the 54K polypeptide of the signal recognition particle. Nature 320, 634–636. 101 Kyte, J. and Doolittle, R. F. (1982). A simple method for displaying the hydrophobic character of a protein. J. Mol. Biol. 157, 105–132. 102 Lauffer, L., García, P. D., Harkins, R. N., Coussens, L., Ullrich, A. and Walter, P. (1985). Topology of signal recognition particle receptor in endoplasmic reticulum membrane. Nature 318, 334–338. 103 Lingappa, V. R. (1991). More than just a channel: provocative new features of protein traffic across the ER membrane. Cell 65, 527–530. 104 Lipp, J., Dobberstein, B. and Haeuptle, M.-T. (1987). Signal recognition particle arrests elongation of nascent secretory and membrane proteins at multiple sites in a transient manner. J. Biol. Chem. 262, 1680–1684. 105 Lolle, S. J. and Bussey, H. (1986). In vivo evidence for posttranslational translocation and signal cleavage of the killer preprotoxin of Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 4274–4280. 106 Lütcke, H., High, S., Römisch, K., Ashford, A. J. and Dobberstein, B. (1992). The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences. EMBO J. 11, 1543–1551. 107 Meyer, D. I. and Dobberstein, B. (1980a). Identification and characterization of a membrane component essential for the translocation of nascent secretory proteins across the endoplasmic reticulum. J. Cell Biol. 87, 503–508. 108 Meyer, D. I. and Dobberstein, B. (1980b). A membrane component essential for vectorial translocation of nascent proteins across the endoplasmic reticulum: requirements for its extraction and reassociation with membranes. J. Cell Biol. 87, 498–502. 109 Meyer, D. I., Krause, E. and Dobberstein, B. (1982). Secretory protein translocation across membrane—the role of the ‘docking protein’. Nature 297, 647–650. 110 Migliaccio, G., Nichitta, C. V. and Blobel, G. (1992). The signal sequence receptor, unlike the signal recognition particle receptor, is not essential for protein translocation. J. Cell Biol. 117, 15–25. 111 Mizuno, K., Nakamura, T., Ohshima, Tanaka, S. and Matsuo, H. (1988). Yeast KEX2 gene encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem. Biophys. Res. Comm. 156, 246–254. 112 Mohele, C. M., Dixon, C. K. and Jones, E. W. (1989). Processing pathway for protease B of Saccharomyces cerevisiae. J. Cell Biol. 108, 309–324. 113 Mohele, C. M., Tizard, R., Lemmon, S. K., Smart, J. and Jones, E. W. (1987). Protease B of the lysosomelike vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisin family of serine proteases. Mol. Cell. Biol. 7, 4390–4399. 114 Müller, M., Ibrahimi, I., Chang, C. N., Walter, P. and Blobel, G. (1982). A bacterial secretory protein requires signal recognition particle for translocation across mammalian endoplasmic reticulum. J. Biol. Chem. 257, 11860–11863. 115 Müller, G. and Zimmerman, R. (1988). Import of honeybee prepromelittin into the endoplasmic reticulum: energy requirements for membrane insertion. EMBO J. 7, 639–648. 116 Müsch, A., Wiedmann, M. and Rapoport, T. A. (1992). Yeast sec proteins interact with polypeptides transversing the endoplasmic reticulum membrane. Cell 69, 343–352. 117 Nichita, C. V. and Blobel, G. (1989). Nascent secretory chain binding and translocation are distinct processes: differentiation by chemical alkylation. J. Cell Biol. 108, 789–795. 118 Noiva, R. and Lennarz, W. J. (1992). Protein disulfide isomerase. A multifunctional protein resident in the lumen of the endoplasmic reticulum. J. Biol. Chem. 267, 3553–3556. 119 Norminton, K., Kohno, K., Kozutsumi, Y., Gething, M. J. and Sambrook, J. (1989). S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell 57, 1223–1236. 120 Novak, P., Ray, P. H. and Dev, I. K. (1986). Localization and purification of two enzymes from Escherichia coli capable of hydrolyzing a signal peptide. J. Biol. Chem. 261, 420–427. 121 Novick, P., Field, Ch. and Schekman, R. (1980). Identification of 23 complementation groups required for posttranslational events in the secretory pathway. Cell 21, 205–215. 122 Nunnari, J. M., Zimmerman, D. L., Ogg, S. C. and Walter, P. (1991). Characterization of the rough endoplasmic reticulum ribosome-binding activity. Nature 352, 638–640. 123 O'Neil, K. T., Erickson-Viitanen, S., Wolfe, H. R., Jr. and Rothman, J. E. (1989). GTP and methionine bristles. Nature 340, 433–434. 124 Ooi, C. E. and Weiss, J. (1992). Bidirectional movement of a nascent polypeptide across microsomal membranes reveals requirements for vectorial translocation of proteins. Cell 71, 87–96. 125 Pelham, H. R. B. (1986). Speculations on the function of the major heat shock and glucose-regulated proteins. Cell 46, 959–961. 126 Perlman, D. and Halvorson, H. O. (1981). Distinct repressible mRNAs for cytoplasmic and secreted yeast invertase are encoded by a single gene. Cell 25, 525–536. 127 Perlman, D. and Halvorson, H. O. (1983). A putative signal recognition site and sequence in eukaryotic and prokaryotic signal peptides. J. Mol. Biol. 167, 391–409. 128 Perlman, D., Raney, P. and Halvorson, H. O. (1986). Mutations affecting the signal sequence alter synthesis and secretion of yeast invertase. Proc. Natl. Acad. Sci. USA 83, 5033–5037. 129 Poritz, M. A., Bernstein, H. D., Strub, K., Zopf, D., Wilhelm, H. and Walter, P. (1990). An E. coli ribonucleoprotein containing 4.5 S RNA resembles mammalian signal recognition particle. Science 250, 1111–1117. 130 Poritz, M. A., Siegel, V., Hansen, W. and Walter, P. (1988a). Small ribonucleoproteins in Schizosaccharomyces pombe and Yarrowia lipolytica homologous to signal recognition particle. Proc. Natl. Acad. Sci. USA 85, 4315–4319. 131 Poritz, M. A., Strub, K. and Walter, P. (1988b). Human SRP RNA and E. coli 4.5S RNA contain a highly homologous structural domain. Cell 55, 4–6. 132 Preuss, D. and Botstein, D. (1989). Intragenic revertants of yeast invertase variants with secretion-defective leader sequences. Mol. Cell. Biol. 9, 1452–1464. 133 Preuss, D., Mulholland, J., Kaiser, C. A., Orlean, P., Albright, C., Rose, M. D., Robbins, P. W. and Botstein, D. (1991). Structure of the yeast endoplasmic reticulum: localization of ER proteins using immunofluorescence and immunoelectron microscopy. Yeast 7, 891–911. 134 Randall, L. L. and Hardy, S. J. (1989). Unity in function in the absence of consensus in sequence: role of leader peptides in export. Science 243, 1156–1159. 135 Rapiejko, P. J. and Gilmore, R. (1992). Protein translocation across the ER requires a functional GTP binding site in the β subunit of the signal recognition particle receptor. J. Cell Biol. 117, 493–503. 136 Rapoport, T. A. (1990). Protein across the ER membrane. TIBS 15, 355–358. 137 Rapoport, T. A. and Wiedmann, M. (1985). Application of the signal hypothesis to the incorporation of integral membrane protein. Curr. Top. Membr. Transp. 24, 1–63. 138 Redding, K., Holcomb, C. and Fuller, R. S. (1991). Immunolocalization of kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae. J. Cell Biol. 113, 527–538. 139 Ribes, V., Dehoux, P. and Tollervey, D. (1988). 7SL RNA from Schizosaccharomyces pombe is encoded by a single essential gene. EMBO J. 7, 231–237. 140 Ribes, V., Romisch, K., Gi
Referência(s)