Huntingtin Controls Neurotrophic Support and Survival of Neurons by Enhancing BDNF Vesicular Transport along Microtubules
2004; Cell Press; Volume: 118; Issue: 1 Linguagem: Inglês
10.1016/j.cell.2004.06.018
ISSN1097-4172
AutoresLaurent Gauthier, Bénédicte C. Charrin, María Borrell‐Pages, Jim Dompierre, Hélène Rangone, Fabrice P. Cordelières, Jan De Mey, Marcy E. MacDonald, Volkmar Leßmann, Sandrine Humbert, Frédéric Saudou,
Tópico(s)Cellular transport and secretion
ResumoAbstract Polyglutamine expansion (polyQ) in the protein huntingtin is pathogenic and responsible for the neuronal toxicity associated with Huntington's disease (HD). Although wild-type huntingtin possesses antiapoptotic properties, the relationship between the neuroprotective functions of huntingtin and pathogenesis of HD remains unclear. Here, we show that huntingtin specifically enhances vesicular transport of brain-derived neurotrophic factor (BDNF) along microtubules. Huntingtin-mediated transport involves huntingtin-associated protein-1 (HAP1) and the p150 Glued subunit of dynactin, an essential component of molecular motors. BDNF transport is attenuated both in the disease context and by reducing the levels of wild-type huntingtin. The alteration of the huntingtin/HAP1/p150 Glued complex correlates with reduced association of motor proteins with microtubules. Finally, we find that the polyQ-huntingtin-induced transport deficit results in the loss of neurotrophic support and neuronal toxicity. Our findings indicate that a key role of huntingtin is to promote BDNF transport and suggest that loss of this function might contribute to pathogenesis.
Referência(s)