Artigo Acesso aberto Revisado por pares

TSLP Signaling Network Revealed by SILAC-Based Phosphoproteomics

2012; Elsevier BV; Volume: 11; Issue: 6 Linguagem: Inglês

10.1074/mcp.m112.017764

ISSN

1535-9484

Autores

Jun Zhong, Min‐Sik Kim, Raghothama Chaerkady, Xinyan Wu, Tai‐Chung Huang, Derese Getnet, Chris J. Mitchell, Shyam Mohan Palapetta, Jyoti Sharma, Robert N. O’Meally, Robert N. Cole, Akinori Yoda, Albrecht Moritz, Marc Loriaux, A. John Rush, David M. Weinstock, Jeffrey W. Tyner, Akhilesh Pandey,

Tópico(s)

Allergic Rhinitis and Sensitization

Resumo

Thymic stromal lymphopoietin (TSLP) is a cytokine that plays diverse roles in the regulation of immune responses. TSLP requires a heterodimeric receptor complex consisting of IL-7 receptor α subunit and its unique TSLP receptor (gene symbol CRLF2) to transmit signals in cells. Abnormal TSLP signaling (e.g. overexpression of TSLP or its unique receptor TSLPR) contributes to the development of a number of diseases including asthma and leukemia. However, a detailed understanding of the signaling pathways activated by TSLP remains elusive. In this study, we performed a global quantitative phosphoproteomic analysis of the TSLP signaling network using stable isotope labeling by amino acids in cell culture. By employing titanium dioxide in addition to antiphosphotyrosine antibodies as enrichment methods, we identified 4164 phosphopeptides on 1670 phosphoproteins. Using stable isotope labeling by amino acids in cell culture-based quantitation, we determined that the phosphorylation status of 226 proteins was modulated by TSLP stimulation. Our analysis identified activation of several members of the Src and Tec families of kinases including Btk, Lyn, and Tec by TSLP for the first time. In addition, we report TSLP-induced phosphorylation of protein phosphatases such as Ptpn6 (SHP-1) and Ptpn11 (Shp2), which has also not been reported previously. Co-immunoprecipitation assays showed that Shp2 binds to the adapter protein Gab2 in a TSLP-dependent manner. This is the first demonstration of an inducible protein complex in TSLP signaling. A kinase inhibitor screen revealed that pharmacological inhibition of PI-3 kinase, Jak family kinases, Src family kinases or Btk suppressed TSLP-dependent cellular proliferation making them candidate therapeutic targets in diseases resulting from aberrant TSLP signaling. Our study is the first phosphoproteomic analysis of the TSLP signaling pathway that greatly expands our understanding of TSLP signaling and provides novel therapeutic targets for TSLP/TSLPR-associated diseases in humans. Thymic stromal lymphopoietin (TSLP) is a cytokine that plays diverse roles in the regulation of immune responses. TSLP requires a heterodimeric receptor complex consisting of IL-7 receptor α subunit and its unique TSLP receptor (gene symbol CRLF2) to transmit signals in cells. Abnormal TSLP signaling (e.g. overexpression of TSLP or its unique receptor TSLPR) contributes to the development of a number of diseases including asthma and leukemia. However, a detailed understanding of the signaling pathways activated by TSLP remains elusive. In this study, we performed a global quantitative phosphoproteomic analysis of the TSLP signaling network using stable isotope labeling by amino acids in cell culture. By employing titanium dioxide in addition to antiphosphotyrosine antibodies as enrichment methods, we identified 4164 phosphopeptides on 1670 phosphoproteins. Using stable isotope labeling by amino acids in cell culture-based quantitation, we determined that the phosphorylation status of 226 proteins was modulated by TSLP stimulation. Our analysis identified activation of several members of the Src and Tec families of kinases including Btk, Lyn, and Tec by TSLP for the first time. In addition, we report TSLP-induced phosphorylation of protein phosphatases such as Ptpn6 (SHP-1) and Ptpn11 (Shp2), which has also not been reported previously. Co-immunoprecipitation assays showed that Shp2 binds to the adapter protein Gab2 in a TSLP-dependent manner. This is the first demonstration of an inducible protein complex in TSLP signaling. A kinase inhibitor screen revealed that pharmacological inhibition of PI-3 kinase, Jak family kinases, Src family kinases or Btk suppressed TSLP-dependent cellular proliferation making them candidate therapeutic targets in diseases resulting from aberrant TSLP signaling. Our study is the first phosphoproteomic analysis of the TSLP signaling pathway that greatly expands our understanding of TSLP signaling and provides novel therapeutic targets for TSLP/TSLPR-associated diseases in humans. Thymic stromal lymphopoietin (TSLP) 1The abbreviations used are:TSLPthymic stromal lymphopoietinTSLPRthymic stromal lymphopoietin receptorIL-7RαIL-7 receptor α subunitSILACstable isotope labeling by amino acids in cell cultureBa/F3-ITBa/F3 cells coexpressing human IL-7Rα and TSLPRJakJanus kinasePtpnprotein tyrosine phosphatase non-receptor type. 1The abbreviations used are:TSLPthymic stromal lymphopoietinTSLPRthymic stromal lymphopoietin receptorIL-7RαIL-7 receptor α subunitSILACstable isotope labeling by amino acids in cell cultureBa/F3-ITBa/F3 cells coexpressing human IL-7Rα and TSLPRJakJanus kinasePtpnprotein tyrosine phosphatase non-receptor type. is an IL-7-like four-helix bundle cytokine that was originally identified as a growth factor from the conditioned medium of the Z210R.1 thymic stromal cell line to support B-cell development in the absence of IL-7 (1Friend S.L. Hosier S. Nelson A. Foxworthe D. Williams D.E. Farr A. A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells.Exp. Hematol. 1994; 22: 321-328PubMed Google Scholar, 2Levin S.D. Koelling R.M. Friend S.L. Isaksen D.E. Ziegler S.F. Perlmutter R.M. Farr A.G. Thymic stromal lymphopoietin: a cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism.J. Immunol. 1999; 162: 677-683Crossref PubMed Google Scholar). TSLP mediates its effects through a heterodimeric receptor complex consisting of IL-7Rα and a unique TSLP receptor (TSLPR, also known as CRLF2) (3Pandey A. Ozaki K. Baumann H. Levin S.D. Puel A. Farr A.G. Ziegler S.F. Leonard W.J. Lodish H.F. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin.Nat. Immunol. 2000; 1: 59-64Crossref PubMed Google Scholar, 4Park L.S. Martin U. Garka K. Gliniak B. Di Santo J.P. Muller W. Largaespada D.A. Copeland N.G. Jenkins N.A. Farr A.G. Ziegler S.F. Morrissey P.J. Paxton R. Sims J.E. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: Formation of a functional heteromeric complex requires interleukin 7 receptor.J. Exp. Med. 2000; 192: 659-670Crossref PubMed Scopus (303) Google Scholar). In humans, epithelial cells are the major source of TSLP (5Soumelis V. Reche P.A. Kanzler H. Yuan W. Edward G. Homey B. Gilliet M. Ho S. Antonenko S. Lauerma A. Smith K. Gorman D. Zurawski S. Abrams J. Menon S. McClanahan T. de Waal-Malefyt Rd R. Bazan F. Kastelein R.A. Liu Y.J. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP.Nat. Immunol. 2002; 3: 673-680Crossref PubMed Scopus (326) Google Scholar), which acts on a number of distinctive cell types. TSLP released from airway epithelial cells synergizes with IL-1 and TNF to stimulate the production of high levels of Th2 cytokines by mast cells (6Allakhverdi Z. Comeau M.R. Jessup H.K. Yoon B.R. Brewer A. Chartier S. Paquette N. Ziegler S.F. Sarfati M. Delespesse G. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells.J. Exp. Med. 2007; 204: 253-258Crossref PubMed Scopus (543) Google Scholar). TSLP can promote the maturation of dendritic cells, thereby driving the Type 2 differentiation of T helper cells (7Liu Y.J. Soumelis V. Watanabe N. Ito T. Wang Y.H. Malefyt Rde W. Omori M. Zhou B. Ziegler S.F. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation.Annu. Rev. Immunol. 2007; 25: 193-219Crossref PubMed Scopus (485) Google Scholar). Studies have also shown that TSLP enhances proliferation of CD4+ and CD8+ T cells activated by T-cell receptor stimulation (8Akamatsu T. Watanabe N. Kido M. Saga K. Tanaka J. Kuzushima K. Nishio A. Chiba T. Human TSLP directly enhances expansion of CD8+ T cells.Clin. Exp. Immunol. 2008; 154: 98-106Crossref PubMed Scopus (35) Google Scholar, 9Rochman I. Watanabe N. Arima K. Liu Y.J. Leonard W.J. Cutting edge: direct action of thymic stromal lymphopoietin on activated human CD4+ T cells.J. Immunol. 2007; 178: 6720-6724Crossref PubMed Scopus (149) Google Scholar). In mice, TSLP can also activate dendritic cells (10Zhou B. Comeau M.R. De Smedt T. Liggitt H.D. Dahl M.E. Lewis D.B. Gyarmati D. Aye T. Campbell D.J. Ziegler S.F. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice.Nat. Immunol. 2005; 6: 1047-1053Crossref PubMed Scopus (625) Google Scholar), CD4+ T cells (11Omori M. Ziegler S. Induction of IL-4 expression in CD4(+) T cells by thymic stromal lymphopoietin.J. Immunol. 2007; 178: 1396-1404Crossref PubMed Google Scholar), and CD8+ T cells (12Rochman Y. Leonard W.J. The role of thymic stromal lymphopoietin in CD8+ T cell homeostasis.J. Immunol. 2008; 181: 7699-7705Crossref PubMed Scopus (0) Google Scholar), and is important for pre-B-cell development (13Scheeren F.A. van Lent A.U. Nagasawa M. Weijer K. Spits H. Legrand N. Blom B. Thymic stromal lymphopoietin induces early human B-cell proliferation and differentiation.Eur. J. Immunol. 2010; 40: 955-965Crossref PubMed Scopus (36) Google Scholar). thymic stromal lymphopoietin thymic stromal lymphopoietin receptor IL-7 receptor α subunit stable isotope labeling by amino acids in cell culture Ba/F3 cells coexpressing human IL-7Rα and TSLPR Janus kinase protein tyrosine phosphatase non-receptor type. thymic stromal lymphopoietin thymic stromal lymphopoietin receptor IL-7 receptor α subunit stable isotope labeling by amino acids in cell culture Ba/F3 cells coexpressing human IL-7Rα and TSLPR Janus kinase protein tyrosine phosphatase non-receptor type. Hyperactive TSLP signaling resulting from overexpression of TSLP contributes to the development of allergic inflammation observed in asthma and atopic dermatitis. Yin and colleagues have shown that the expression of TSLP is elevated in airway epithelial and mast cells of asthmatic patients (14Ying S. O'Connor B. Ratoff J. Meng Q. Mallett K. Cousins D. Robinson D. Zhang G. Zhao J. Lee T.H. Corrigan C. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity.J. Immunol. 2005; 174: 8183-8190Crossref PubMed Scopus (625) Google Scholar) and is correlated with the severity of asthma in patients (15Ying S. O'Connor B. Ratoff J. Meng Q. Fang C. Cousins D. Zhang G. Gu S. Gao Z. Shamji B. Edwards M.J. Lee T.H. Corrigan C.J. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease.J. Immunol. 2008; 181: 2790-2798Crossref PubMed Google Scholar). Studies in mice have confirmed that overexpression of TSLP in lung epithelial cells induces development of asthma-like symptoms (10Zhou B. Comeau M.R. De Smedt T. Liggitt H.D. Dahl M.E. Lewis D.B. Gyarmati D. Aye T. Campbell D.J. Ziegler S.F. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice.Nat. Immunol. 2005; 6: 1047-1053Crossref PubMed Scopus (625) Google Scholar, 16Al-Shami A. Spolski R. Kelly J. Keane-Myers A. Leonard W.J. A role for TSLP in the development of inflammation in an asthma model.J. Exp. Med. 2005; 202: 829-839Crossref PubMed Scopus (380) Google Scholar, 17Headley M.B. Zhou B. Shih W.X. Aye T. Comeau M.R. Ziegler S.F. TSLP Conditions the Lung Immune Environment for the Generation of Pathogenic Innate and Antigen-Specific Adaptive Immune Responses.J. Immunol. 2009; 182: 1641-1647Crossref PubMed Google Scholar). Similarly, skin-specific expression of TSLP in mice not only induces atopic dermatitis (18Yoo J. Omori M. Gyarmati D. Zhou B. Aye T. Brewer A. Comeau M.R. Campbell D.J. Ziegler S.F. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin.J. Exp. Med. 2005; 202: 541-549Crossref PubMed Scopus (435) Google Scholar) but also aggravates experimental allergic asthma (19Zhang Z. Hener P. Frossard N. Kato S. Metzger D. Li M. Chambon P. Thymic stromal lymphopoietin overproduced by keratinocytes in mouse skin aggravates experimental asthma.Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 1536-1541Crossref PubMed Scopus (134) Google Scholar). The identification of a locus encompassing TSLP from a genome-wide association study for eosinophilic esophagitis coupled to the observation that TSLP is overexpressed in eosinophilic esophagitis patients suggests that TSLP is also a likely candidate in the pathogenesis of eosinophilic esophagitis (20Rothenberg M.E. Spergel J.M. Sherrill J.D. Annaiah K. Martin L.J. Cianferoni A. Gober L. Kim C. Glessner J. Frackelton E. Thomas K. Blanchard C. Liacouras C. Verma R. Aceves S. Collins M.H. Brown-Whitehorn T. Putnam P.E. Franciosi J.P. Chiavacci R.M. Grant S.F. Abonia J.P. Sleiman P.M. Hakonarson H. Common variants at 5q22 associate with pediatric eosinophilic esophagitis.Nat. Genet. 2010; 42: 289-291Crossref PubMed Scopus (318) Google Scholar). Most recently, TSLPR has been implicated in oncogenesis, specifically B-progenitor acute lymphoblastic leukemia (B-ALL). A number of groups have demonstrated that CRLF2 alterations occur in 5–7% of all B-ALL and in 60% of B-ALL in children with Down syndrome (21Cario G. Zimmermann M. Romey R. Gesk S. Vater I. Harbott J. Schrauder A. Moericke A. Izraeli S. Akasaka T. Dyer M.J. Siebert R. Schrappe M. Stanulla M. Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol.Blood. 2010; 115: 5393-5397Crossref PubMed Scopus (145) Google Scholar, 22Tsai A.G. Yoda A. Weinstock D.M. Lieber M.R. t(X;14)(p22;q32)/t(Y;14)(p11;q32) CRLF2-IGH translocations from human B-lineage ALLs involve CpG-type breaks at CRLF2, but CRLF2/P2RY8 intrachromosomal deletions do not.Blood. 2010; 116: 1993-1994Crossref PubMed Scopus (13) Google Scholar, 23Chapiro E. Russell L. Lainey E. Kaltenbach S. Ragu C. Della-Valle V. Hanssens K. Macintyre E.A. Radford-Weiss I. Delabesse E. Cavé H. Mercher T. Harrison C.J. Nguyen-Khac F. Dubreuil P. Bernard O.A. Activating mutation in the TSLPR gene in B-cell precursor lymphoblastic leukemia.Leukemia. 2010; 24: 642-645Crossref PubMed Scopus (0) Google Scholar, 24Dyer M.J. Akasaka T. Capasso M. Dusanjh P. Lee Y.F. Karran E.L. Nagel I. Vater I. Cario G. Siebert R. Immunoglobulin heavy chain locus chromosomal translocations in B-cell precursor acute lymphoblastic leukemia: rare clinical curios or potent genetic drivers?.Blood. 2010; 115: 1490-1499Crossref PubMed Scopus (44) Google Scholar, 25Hertzberg L. Vendramini E. Ganmore I. Cazzaniga G. Schmitz M. Chalker J. Shiloh R. Iacobucci I. Shochat C. Zeligson S. Cario G. Stanulla M. Strehl S. Russell L.J. Harrison C.J. Bornhauser B. Yoda A. Rechavi G. Bercovich D. Borkhardt A. Kempski H. te Kronnie G. Bourquin J.P. Domany E. Izraeli S. Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group.Blood. 2010; 115: 1006-1017Crossref PubMed Scopus (238) Google Scholar, 26Yoda A. Yoda Y. Chiaretti S. Bar-Natan M. Mani K. Rodig S.J. West N. Xiao Y. Brown J.R. Mitsiades C. Sattler M. Kutok J.L. DeAngelo D.J. Wadleigh M. Piciocchi A. Dal Cin P. Bradner J.E. Griffin J.D. Anderson K.C. Stone R.M. Ritz J. Foà R. Aster J.C. Frank D.A. Weinstock D.M. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia.Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 252-257Crossref PubMed Scopus (229) Google Scholar, 27Russell L.J. Capasso M. Vater I. Akasaka T. Bernard O.A. Calasanz M.J. Chandrasekaran T. Chapiro E. Gesk S. Griffiths M. Guttery D.S. Haferlach C. Harder L. Heidenreich O. Irving J. Kearney L. Nguyen-Khac F. Machado L. Minto L. Majid A. Moorman A.V. Morrison H. Rand V. Strefford J.C. Schwab C. Tönnies H. Dyer M.J. Siebert R. Harrison C.J. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia.Blood. 2009; 114: 2688-2698Crossref PubMed Scopus (335) Google Scholar, 28Mullighan C.G. Collins-Underwood J.R. Phillips L.A. Loudin M.G. Liu W. Zhang J. Ma J. Coustan-Smith E. Harvey R.C. Willman C.L. Mikhail F.M. Meyer J. Carroll A.J. Williams R.T. Cheng J. Heerema N.A. Basso G. Pession A. Pui C.H. Raimondi S.C. Hunger S.P. Downing J.R. Carroll W.L. Rabin K.R. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia.Nat. Genet. 2009; 41: 1243-1246Crossref PubMed Scopus (421) Google Scholar). Most of CRLF2 alterations involve [email protected] rearrangements or PAR1 deletion resulting in overexpression of CRLF2. Other CRLF2 alterations include rearrangements to other, as yet unknown, partner genes or activating mutations such as F232C (23Chapiro E. Russell L. Lainey E. Kaltenbach S. Ragu C. Della-Valle V. Hanssens K. Macintyre E.A. Radford-Weiss I. Delabesse E. Cavé H. Mercher T. Harrison C.J. Nguyen-Khac F. Dubreuil P. Bernard O.A. Activating mutation in the TSLPR gene in B-cell precursor lymphoblastic leukemia.Leukemia. 2010; 24: 642-645Crossref PubMed Scopus (0) Google Scholar, 26Yoda A. Yoda Y. Chiaretti S. Bar-Natan M. Mani K. Rodig S.J. West N. Xiao Y. Brown J.R. Mitsiades C. Sattler M. Kutok J.L. DeAngelo D.J. Wadleigh M. Piciocchi A. Dal Cin P. Bradner J.E. Griffin J.D. Anderson K.C. Stone R.M. Ritz J. Foà R. Aster J.C. Frank D.A. Weinstock D.M. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia.Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 252-257Crossref PubMed Scopus (229) Google Scholar). Clearly, an understanding of TSLP signaling will accelerate in the development of specific therapeutics in diseases where the TSLP/TSLPR axis plays a key role in pathogenesis. It is known that TSLP can activate the JAK-STAT pathway by inducing the phosphorylation of two members of the Janus kinase family, JAK1 and JAK2, and six members of Stat transcription factor family, STAT1, 3, 4, 5a, 5b, and 6 (29Arima K. Watanabe N. Hanabuchi S. Chang M. Sun S.C. Liu Y.J. Distinct signal codes generate dendritic cell functional plasticity.Sci. Signal. 2010; 3: ra4Crossref PubMed Scopus (98) Google Scholar, 30Wohlmann A. Sebastian K. Borowski A. Krause S. Friedrich K. Signal transduction by the atopy-associated human thymic stromal lymphopoietin (TSLP) receptor depends on Janus kinase function.Biol. Chem. 2010; 391: 181-186Crossref PubMed Google Scholar). TSLP requires JAK1 and JAK2 to activate STAT5 (31Rochman Y. Kashyap M. Robinson G.W. Sakamoto K. Gomez-Rodriguez J. Wagner K.U. Leonard W.J. Thymic stromal lymphopoietin-mediated STAT5 phosphorylation via kinases JAK1 and JAK2 reveals a key difference from IL-7-induced signaling.Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 19455-19460Crossref PubMed Scopus (115) Google Scholar). TSLP is also known to increase the phosphorylation of ERK1/2, JNK1/2, AKT, ribosomal protein S6, and 4E-BP1 (12Rochman Y. Leonard W.J. The role of thymic stromal lymphopoietin in CD8+ T cell homeostasis.J. Immunol. 2008; 181: 7699-7705Crossref PubMed Scopus (0) Google Scholar, 29Arima K. Watanabe N. Hanabuchi S. Chang M. Sun S.C. Liu Y.J. Distinct signal codes generate dendritic cell functional plasticity.Sci. Signal. 2010; 3: ra4Crossref PubMed Scopus (98) Google Scholar, 32Shan L. Redhu N.S. Saleh A. Halayko A.J. Chakir J. Gounni A.S. Thymic stromal lymphopoietin receptor-mediated IL-6 and CC/CXC chemokines expression in human airway smooth muscle cells: role of MAPKs (ERK1/2, p38, and JNK) and STAT3 pathways.J. Immunol. 2010; 184: 7134-7143Crossref PubMed Scopus (80) Google Scholar, 33Brown V.I. Hulitt J. Fish J. Sheen C. Bruno M. Xu Q. Carroll M. Fang J. Teachey D. Grupp S.A. Thymic stromal-derived lymphopoietin induces proliferation of pre-B leukemia and antagonizes mTOR inhibitors, suggesting a role for interleukin-7Ralpha signaling.Cancer Res. 2007; 67: 9963-9970Crossref PubMed Scopus (0) Google Scholar). However, the knowledge of TSLP signaling obtained from biochemical experiments is scattered and the detailed signal transduction pathways responsible for various biological effects of TSLP still remain elusive. Stable isotope labeling by amino acids in cell culture (SILAC) is a well-established method for labeling cellular proteome that allows precise MS-based protein quantitation (34Ong S.E. Blagoev B. Kratchmarova I. Kristensen D.B. Steen H. Pandey A. Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.Mol. Cell. Proteomics. 2002; 1: 376-386Abstract Full Text Full Text PDF PubMed Scopus (4225) Google Scholar, 35Harsha H.C. Molina H. Pandey A. Quantitative proteomics using stable isotope labeling with amino acids in cell culture.Nat. Protoc. 2008; 3: 505-516Crossref PubMed Scopus (153) Google Scholar, 36Mann M. Functional and quantitative proteomics using SILAC.Nat. Rev. Mol. Cell Biol. 2006; 7: 952-958Crossref PubMed Scopus (709) Google Scholar). SILAC-based quantitation of the phosphoproteome in cells was first reported by Ibarrola et al. using antiphosphotyrosine antibodies to enrich tyrosine phosphorylated proteins (37Ibarrola N. Kalume D.E. Gronborg M. Iwahori A. Pandey A. A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture.Anal. Chem. 2003; 75: 6043-6049Crossref PubMed Scopus (141) Google Scholar). This strategy has been employed to dissect tyrosine phosphorylation-mediated signaling pathways including EGF (38Blagoev B. Ong S.E. Kratchmarova I. Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics.Nat. Biotechnol. 2004; 22: 1139-1145Crossref PubMed Scopus (568) Google Scholar), EphB2 (39Zhang G. Spellman D.S. Skolnik E.Y. Neubert T.A. Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC).J. Proteome Res. 2006; 5: 581-588Crossref PubMed Scopus (70) Google Scholar), Her2/neu (40Bose R. Molina H. Patterson A.S. Bitok J.K. Periaswamy B. Bader J.S. Pandey A. Cole P.A. Phosphoproteomic analysis of Her2/neu signaling and inhibition.Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 9773-9778Crossref PubMed Scopus (176) Google Scholar), c-Src (41Amanchy R. Zhong J. Hong R. Kim J.H. Gucek M. Cole R.N. Molina H. Pandey A. Identification of c-Src tyrosine kinase substrates in platelet-derived growth factor receptor signaling.Mol. Oncol. 2009; 3: 439-450Crossref PubMed Scopus (42) Google Scholar), and divergent growth factors in mesenchymal stem cell differentiation (42Kratchmarova I. Blagoev B. Haack-Sorensen M. Kassem M. Mann M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation.Science. 2005; 308: 1472-1477Crossref PubMed Scopus (464) Google Scholar). However, one of the drawbacks in the tyrosine-phosphorylated protein enrichment methods by antiphosphotyrosine antibodies is the lack of information about phosphorylation sites in the identified proteins (43Pandey A. Podtelejnikov A.V. Blagoev B. Bustelo X.R. Mann M. Lodish H.F. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors.Proc. Natl. Acad. Sci. U.S.A. 2000; 97: 179-184Crossref PubMed Scopus (363) Google Scholar). A number of phosphopeptide enrichment methods including immobilized metal affinity chromatography (IMAC) (44Posewitz M.C. Tempst P. Immobilized gallium(III) affinity chromatography of phosphopeptides.Anal. Chem. 1999; 71: 2883-2892Crossref PubMed Scopus (764) Google Scholar, 45Ficarro S.B. McCleland M.L. Stukenberg P.T. Burke D.J. Ross M.M. Shabanowitz J. Hunt D.F. White F.M. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae.Nat. Biotechnol. 2002; 20: 301-305Crossref PubMed Scopus (1431) Google Scholar), titanium dioxide (TiO2)-based phosphopeptide enrichment (46Larsen M.R. Thingholm T.E. Jensen O.N. Roepstorff P. Jørgensen T.J. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns.Mol. Cell. Proteomics. 2005; 4: 873-886Abstract Full Text Full Text PDF PubMed Scopus (1270) Google Scholar, 47Kuroda I. Shintani Y. Motokawa M. Abe S. Furuno M. Phosphopeptide-selective column-switching RP-HPLC with a titania precolumn.Anal. Sci. 2004; 20: 1313-1319Crossref PubMed Scopus (95) Google Scholar), strong cation exchange (SCX) chromatography (48Ballif B.A. Villén J. Beausoleil S.A. Schwartz D. Gygi S.P. Phosphoproteomic analysis of the developing mouse brain.Mol. Cell. Proteomics. 2004; 3: 1093-1101Abstract Full Text Full Text PDF PubMed Scopus (307) Google Scholar, 49Beausoleil S.A. Jedrychowski M. Schwartz D. Elias J.E. Villén J. Li J. Cohn M.A. Cantley L.C. Gygi S.P. Large-scale characterization of HeLa cell nuclear phosphoproteins.Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 12130-12135Crossref PubMed Scopus (1191) Google Scholar), and antiphosphotyrosine antibody-based enrichment of tyrosine phosphorylated peptides (50Rush J. Moritz A. Lee K.A. Guo A. Goss V.L. Spek E.J. Zhang H. Zha X.M. Polakiewicz R.D. Comb M.J. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.Nat. Biotechnol. 2005; 23: 94-101Crossref PubMed Scopus (908) Google Scholar) have been developed to pinpoint the phosphorylation sites in the phosphoproteome. These enrichment methods have also been combined with the SILAC strategy to quantitate phosphorylation changes in various biological systems. For example, Gruhler et al. combined SCX/IMAC phosphopeptide enrichment with SILAC to study the pheromone-regulated phosphorylation in yeast (51Gruhler A. Olsen J.V. Mohammed S. Mortensen P. Faergeman N.J. Mann M. Jensen O.N. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.Mol. Cell. Proteomics. 2005; 4: 310-327Abstract Full Text Full Text PDF PubMed Scopus (682) Google Scholar) and Nguyen et al. combined IMAC with SILAC and label-free quantitation methods to study temporal dynamics of the phosphoproteome in T-cell receptor signaling (52Nguyen V. Cao L. Lin J.T. Hung N. Ritz A. Yu K. Jianu R. Ulin S.P. Raphael B.J. Laidlaw D.H. Brossay L. Salomon A.R. A new approach for quantitative phosphoproteomic dissection of signaling pathways applied to T cell receptor activation.Mol. Cell. Proteomics. 2009; 8: 2418-2431Abstract Full Text Full Text PDF PubMed Scopus (61) Google Scholar). Olsen and colleagues combined SILAC with TiO2-based enrichment to characterize the EGFR-mediated temporal changes of the phosphoproteome in HeLa cells (53Olsen J.V. Blagoev B. Gnad F. Macek B. Kumar C. Mortensen P. Mann M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.Cell. 2006; 127: 635-648Abstract Full Text Full Text PDF PubMed Scopus (2583) Google Scholar). Rigbolt and colleagues also combined SCX/TiO2 with SILAC to characterize the temporal changes of the phosphoproteome during human embryonic stem cell differentiation (54Rigbolt K.T. Prokhorova T.A. Akimov V. Henningsen J. Johansen P.T. Kratchmarova I. Kassem M. Mann M. Olsen J.V. Blagoev B. System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation.Sci. Signal. 2011; 4: rs3Crossref PubMed Scopus (322) Google Scholar). Guha et al. used antiphosphotyrosine antibodies to enrich tyrosine-phosphorylated peptides and quantitated the changes of the tyrosine phosphoproteome in cells expressing lung cancer-specific alleles of EGFR and KRAS by SILAC (55Guha U. Chaerkady R. Marimuthu A. Patterson A.S. Kashyap M.K. Harsha H.C. Sato M. Bader J.S. Lash A.E. Minna J.D. Pandey A. Varmus H.E. Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS.Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 14112-14117Crossref PubMed Scopus (93) Google Scholar). Rubbi et al. combined antiphosphotyrosine antibodies with SILAC to reveal crosstalk between Bcr-Abl and negative feedback mechanisms controlling Src signaling (56Rubbi L. Titz B. Brown L. Galvan E. Komisopoulou E. Chen S.S. Low T. Tahmasian M. Skaggs B. Müschen M. Pellegrini M. Graeber T.G. Global phosphoproteomics reveals crosstalk between bcr-abl and negative feedback mechanisms controlling SRC signaling.Sci. Signal. 2011; 4: ra18Crossref PubMed Scopus (54) Google Scholar). Thus, SILAC-based quantitative phosphoproteomic approaches are a powerful tool to dissect phosphorylation-mediated signaling pathways. Previously, we undertook a systematic mutagenesis approach to evaluate the role of tyrosine residues in the TSLP receptor complex in mediating TSLP-induced cellular proliferation (57Zhong J. Pandey A. Site-directed mutagenesis reveals a unique requirement for tyrosine residues in IL-7R alpha and TSLPR cytoplasmic domains in TSLP-dependent cell proliferation.BMC Immunol. 2010; 11: 5Crossref PubMed Scopus (0) Google Scholar). In contrast to IL-4, 7, or 9 signaling, our data revealed that any single cytoplasmic tyrosine residue of either human IL-7Rα chain or TSLPR could mediate TSLP-induced cellular proliferation. Mutation of all four cytoplasmic tyrosine residues of human TSLP receptor complex to phenylalanine was required to completely abolish TSLP-dependent cell proliferation and Stat5a phosphorylation delineating the importance of tyrosine phosphorylation in TSLP signaling. Here, we applied a SILAC-based strategy to study the phosphoproteomic changes induced by TSLP in cells. By using TiO2- and antiphosphotyrosine antibody-based phosphopeptide enrichment, we identified 4,164 phosphopeptides on 1,670 p

Referência(s)