Artigo Acesso aberto Revisado por pares

Molecular and Cellular Response Profiles Induced by the TLR4 Agonist-Based Adjuvant Glucopyranosyl Lipid A

2012; Public Library of Science; Volume: 7; Issue: 12 Linguagem: Inglês

10.1371/journal.pone.0051618

ISSN

1932-6203

Autores

Stacie Lambert, Chin‐Fen Yang, Zheng Liu, Rosemary Sweetwood, Jackie Zhao, Lily Cheng, Hong Jin, Jennifer Woo,

Tópico(s)

Antimicrobial Peptides and Activities

Resumo

Background Toll-like receptor (TLR)4 agonists are known potent immunostimulatory compounds. These compounds can be formulated as part of novel adjuvants to enhance vaccine medicated immune responses. However, the contribution of the formulation to the innate in vivo activity of TLR4 agonist compounds is not well understood. Methodology and Principal Findings We evaluated synthetic TLR4 agonist Glucopyranosyl Lipid A (GLA) for its effects on molecular and cellular innate immune responses in the murine model. Microarray techniques were used to compare the responses to GLA in an aqueous formulation or in an oil-in-water Stable Emulsion formulation (GLA-SE) versus either SE alone or the mineral salt aluminum hydroxide (alum) at the muscle injection site over multiple timepoints. In contrast to the minimal gene upregulation induced by SE and alum, both GLA and GLA-SE triggered MyD88- and TRIF-dependent gene expression. Genes for chemokines, cytokine receptors, signaling molecules, complement, and antigen presentation were also strongly upregulated by GLA and GLA-SE. These included chemokines for TH1-type T cells (CXCL9 and CXCL10) and mononuclear leukocytes (CCL2, CCL3) among others. GLA-SE induced stronger and more sustained gene upregulation than GLA in the muscle; GLA-SE induced genes were also detected in local draining lymph nodes and at lower levels in peripheral blood. Both GLA and GLA-SE resulted in increased cellular trafficking to the draining lymph nodes and upregulated MHC molecules and ICAM1 on local dendritic cells. GLA and GLA-SE transiently upregulated circulating MCP-1, TNFα, IFNγ and IP-10 in blood. Conclusions/Significance While GLA and GLA-SE activate a large number of shared innate genes and proteins, GLA-SE induces a quantitatively and qualitatively stronger response than GLA, SE or alum. The genes and proteins upregulated could be used to facilitate selection of appropriate adjuvant doses in vaccine formulations.

Referência(s)