The Exon 1 Cys7Gly Polymorphism Within the Betacellulin Gene Is Associated With Type 2 Diabetes in African Americans
2005; American Diabetes Association; Volume: 54; Issue: 4 Linguagem: Inglês
10.2337/diabetes.54.4.1179
ISSN1939-327X
AutoresKristi D. Silver, Magdalena I. Tolea, Jian Wang, Toni I. Pollin, Flora Yao, Braxton D. Mitchell,
Tópico(s)Diabetes Management and Research
ResumoIn vitro and in vivo studies suggest a role for betacellulin in islet neogenesis and regeneration. Since abnormalities in β-cell function play a role in the development of type 2 diabetes, a mutation in the betacellulin gene could potentially contribute to the development of type 2 diabetes. Using RT-PCR, we initially determined that betacellulin was expressed in 9- to 24-week-old human fetal pancreas. We then screened the betacellulin gene for mutations in subjects with type 2 diabetes and identified seven polymorphisms in segments encompassing the 5′ untranslated region (G-233C, A-226G), exon 1 (T̅GC19G̅GC, Cys7Gly), exon 2 (C̅TC130T̅TC, Leu44Phe), exon 4 (T̅TG370A̅TG, Leu124Met), intron 2 (T-31C), and intron 4 (C-4T). These polymorphisms were genotyped in an expanded set of diabetic case and control subjects. Among African Americans (n = 334), the frequency of the Gly7 allele in exon 1 was 31.9% in diabetic case subjects compared with 45.1% in nondiabetic control subjects (P = 0.0004). Allele frequencies for the other polymorphisms did not differ significantly between African-American case and control subjects. Additionally, there were no significant differences in allele frequencies between case and control subjects among the Caucasian sample (n = 426) for any of the seven polymorphisms, including the Gly7 variant. Further studies will be needed to understand the different roles that betacellulin polymorphisms play in susceptibility to type 2 diabetes in Caucasians and African Americans.
Referência(s)