Exercise during pregnancy mitigates Alzheimer‐like pathology in mouse offspring
2011; Wiley; Volume: 26; Issue: 1 Linguagem: Inglês
10.1096/fj.11-193193
ISSN1530-6860
AutoresArne Herring, Anja Donath, Maksym Yarmolenko, Ellen Uslar, Catharina Conzen, Dimitrios Kanakis, Claudius Bosma, Karl Worm, Werner Paulus, Kathy Keyvani,
Tópico(s)Reproductive System and Pregnancy
ResumoThe FASEB JournalVolume 26, Issue 1 p. 117-128 Research CommunicationFree to Read Exercise during pregnancy mitigates Alzheimer-like pathology in mouse offspring Arne Herring, Arne Herring Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorAnja Donath, Anja Donath Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorMaksym Yarmolenko, Maksym Yarmolenko Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorEllen Uslar, Ellen Uslar Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorCatharina Conzen, Catharina Conzen Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorDimitrios Kanakis, Dimitrios Kanakis Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorClaudius Bosma, Claudius Bosma Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorKarl Worm, Karl Worm Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorWerner Paulus, Werner Paulus Institute of Neuropathology, University Hospital Muenster, Muenster, GermanySearch for more papers by this authorKathy Keyvani, Corresponding Author Kathy Keyvani [email protected] Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanyCorrespondence: Institute of Pathology and Neuropathology, University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany. E-mail: [email protected]Search for more papers by this author Arne Herring, Arne Herring Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorAnja Donath, Anja Donath Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorMaksym Yarmolenko, Maksym Yarmolenko Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorEllen Uslar, Ellen Uslar Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorCatharina Conzen, Catharina Conzen Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorDimitrios Kanakis, Dimitrios Kanakis Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorClaudius Bosma, Claudius Bosma Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorKarl Worm, Karl Worm Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanySearch for more papers by this authorWerner Paulus, Werner Paulus Institute of Neuropathology, University Hospital Muenster, Muenster, GermanySearch for more papers by this authorKathy Keyvani, Corresponding Author Kathy Keyvani [email protected] Institute of Pathology and Neuropathology, University Hospital Essen, Essen, GermanyCorrespondence: Institute of Pathology and Neuropathology, University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany. E-mail: [email protected]Search for more papers by this author First published: 24 September 2011 https://doi.org/10.1096/fj.11-193193Citations: 68Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL ABSTRACT Physical activity protects brain function in healthy individuals and those with Alzheimer's disease (AD). Evidence for beneficial effects of parental exercise on the health status of their progeny is sparse and limited to nondiseased individuals. Here, we questioned whether maternal running interferes with offspring's AD-like pathology and sought to decipher the underlying mechanisms in TgCRND8 mice. Maternal stimulation was provided by voluntary wheel running vs. standard housing during pregnancy. Following 5 mo of standard housing of transgenic and wild-type offspring, their brains were examined for AD-related pathology and/or plasticity changes. Running during pregnancy reduced β-amyloid (Aβ) plaque burden (–35%, P= 0.017) and amyloidogenic APP processing in transgenic offspring and further improved the neurovascular function by orchestrating different Aβ transporters and increasing angiogenesis (+29%, P=0.022). This effect was accompanied by diminished inflammation, as indicated by reduced microgliosis (–20%, P=0.002) and down-regulation of other proinflammatory mediators, and resulted in less oxidative stress, as nitrotyrosine levels declined (–28%, P=0.029). Moreover, plasticity changes (in terms of up-regulation of reelin, synaptophysin, and ARC) were found not only in transgenic but also in wild-type offspring. We conclude that exercise during pregnancy provides long-lasting protection from neurodegeneration and improves brain plasticity in the otherwise unstimulated progeny.—Herring, A., Donath, A., Yarmolenko, M., Uslar, E., Conzen, C., Kanakis, D., Bosma, C., Worm, K., Paulus, W., Keyvani, K. Exercise during pregnancy mitigates Alzheimer-like pathology in mouse offspring. FASEB J. 26, 117–128 (2012). www.fasebj.org REFERENCES 1Friedland, R. P., Fritsch, T., Smyth, K. A., Koss, E., Lerner, A. J., Chen, C. H., Petot, G. J., and Debanne, S. M. (2001) Patients with Alzheimer's disease have reduced activities in midlife compared with healthy control-group members. Proc. Natl. Acad. Sci. U. S. A. 98, 3440– 3445 2Wilson, R. S., Mendes De Leon, C. F., Barnes, L. L., Schneider, J. A., Bienias, J. L., Evans, D. A., and Bennett, D. A. (2002) Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA 287, 742– 748 3Scarmeas, N., Luchsinger, J. A., Schupf, N., Brickman, A. M., Cosentino, S., Tang, M. X., and Stern, Y. (2009) Physical activity, diet, and risk of Alzheimer disease. JAMA 302, 627– 637 4Adlard, P. A., Perreau, V. M., Pop, V., and Cotman, C. W. (2005) Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J. Neurosci. 25, 4217– 4221 5Ambrée, O., Leimer, U., Herring, A., Görtz, N., Sachser, N., Heneka, M. T., Paulus, W., and Keyvani, K. (2006) Reduction of amyloid angiopathy and Abeta plaque burden after enriched housing in TgCRND8 mice: involvement of multiple pathways. Am. J. Pathol. 169, 544– 552 6Lazarov, O., Robinson, J., Tang, Y. P., Hairston, I. S., Korade-Mirnics, Z., Lee, V. M., Hersh, L. B., Sapolsky, R. M., Mirnics, K., and Sisodia, S. S. (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120, 701– 713 7Nichol, K. E., Poon, W. W., Parachikova, A. I., Cribbs, D. H., Glabe, C. G., and Cotman, C. W. (2008) Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid. J. Neuroinflammation 5, 13 8Parachikova, A., Nichol, K. E., and Cotman, C. W. (2008) Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiol. Dis. 30, 121– 129 9Herring, A., Blome, M., Ambrée, O., Sachser, N., Paulus, W., and Keyvani, K. (2010) Reduction of cerebral oxidative stress following environmental enrichment in mice with Alzheimerlike pathology. Brain Pathol. 20, 166– 175 10Um, H. S., Kang, E. B., Leem, Y. H., Cho, I. H., Yang, C. H., Chae, K. R., Hwang, D. Y., and Cho, J. Y. (2008) Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/ APPsw-transgenic model. Int. J. Mol. Med. 22, 529– 539 11Herring, A., Yasin, H., Ambrée, O., Sachser, N., Paulus, W., and Keyvani, K. (2008) Environmental enrichment counteracts Alzheimer's neurovascular dysfunction in TgCRND8 mice. Brain Pathol. 18, 32– 39 12Herring, A., Ambrée, O., Tomm, M., Habermann, H., Sachser, N., Paulus, W., and Keyvani, K. (2009) Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Exp. Neurol. 216, 184– 192 13Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., and Kempermann, G. (2006) Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer's disease. Biol. Psychiatry 60, 1314– 1323 14Liu, H. L., Zhao, G., Cai, K., Zhao, H. H., and Shi, L. D. (2011) Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term potentiation. Behav. Brain Res. 218, 308– 314 15Herring, A., Lewejohann, L., Panzer, A. L., Donath, A., Kroll, O., Sachser, N., Paulus, W., and Keyvani, K. (2011) Preventive and therapeutic types of environmental enrichment counteract beta amyloid pathology by different molecular mechanisms. Neurobiol. Dis. 42, 530– 538 16Weissgerber, T. L., Wolfe, L. A., Davies, G. A., and Mottola, M. F. (2006) Exercise in the prevention and treatment of maternal-fetal disease: a review of the literature. Appl. Physiol. Nutr. Metab. 31, 661– 674 17Clapp, J. F., 3rd (1996) Morphometric and neurodevelopmental outcome at age five years of the offspring of women who continued to exercise regularly throughout pregnancy. J. Pediatr. 129, 856– 863 18Kim, H., Lee, S. H., Kim, S. S., Yoo, J. H., and Kim, C. J. (2007) The influence of maternal treadmill running during pregnancy on short-term memory and hippocampal cell survival in rat pups. Int. J. Dev. Neurosci. 25, 243– 249 19Bick-Sander, A., Steiner, B., Wolf, S. A., Babu, H., and Kempermann, G. (2006) Running in pregnancy transiently increases postnatal hippocampal neurogenesis in the offspring. Proc. Natl. Acad. Sci. U. S. A. 103, 3852– 3857 20Arai, J. A., Li, S., Hartley, D. M., and Feig, L. A. (2009) Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment. J. Neurosci. 29, 1496– 1502 21Kanemitsu, H., Tomiyama, T., and Mori, H. (2003) Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci. Lett. 350, 113– 116 22Qiu, W. Q., Walsh, D. M., Ye, Z., Vekrellis, K., Zhang, J., Podlisny, M. B., Rosner, M. R., Safavi, A., Hersh, L. B., and Selkoe, D. J. (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J. Biol. Chem. 273, 32730– 32738 23Saito, T., Iwata, N., Tsubuki, S., Takaki, Y., Takano, J., Huang, S. M., Suemoto, T., Higuchi, M., and Saido, T. C. (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat. Med. 11, 434– 439 24Ciaccio, C., Tundo, G. R., Grasso, G., Spoto, G., Marasco, D., Ruvo, M., Gioia, M., Rizzarelli, E., and Coletta, M. (2009) Somatostatin: a novel substrate and a modulator of insulin-degrading enzyme activity. J. Mol. Biol. 385, 1556– 1567 25Becker, M., Siems, W. E., Kluge, R., Gembardt, F., Schultheiss, H. P., Schirner, M., and Walther, T. (2010) New function for an old enzyme: NEP-deficient mice develop late-onset obesity. PLoS One 5 26Stengel, A., Coskun, T., Goebel, M., Wang, L., Craft, L., Alsina-Fernandez, J., Rivier, J., and Tache, Y. (2010) Central injection of the stable somatostatin analog ODT8-SST induces a soma-tostatin2 receptor-mediated orexigenic effect: role of neuropeptide Y and opioid signaling pathways in rats. Endocrinology 151, 4224– 4235 27Song, M. K., Rosenthal, M. J., Song, A. M., Uyemura, K., Yang, H., Ament, M. E., Yamaguchi, D. T., and Cornford, E. M. (2009) Body weight reduction in rats by oral treatment with zinc plus cyclo-(His-Pro). Br. J. Pharmacol. 158, 442– 450 28von Bernhardi, R., Tichauer, J. E., and Eugenin, J. (2010) Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J. Neurochem. 112, 1099– 1114 29Liang, X., Wang, Q., Hand, T., Wu, L., Breyer, R. M., Montine, T. J., and Andreasson, K. (2005) Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer's disease. J. Neurosci. 25, 10180– 10187 30Walker, D. G., Link, J., Lue, L. F., Dalsing-Hernandez, J. E., and Boyes, B. E. (2006) Gene expression changes by amyloid beta peptide-stimulated human postmortem brain microglia identify activation of multiple inflammatory processes. J. Leukoc. Biol. 79, 596– 610 31Reddy, P. H. (2006) Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer's disease. J. Neurochem. 96, 1– 13 32Zlokovic, B. V. (2005) Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. 28, 202– 208 33Kuhnke, D., Jedlitschky, G., Grube, M., Krohn, M., Jucker, M., Mosyagin, I., Cascorbi, I., Walker, L. C., Kroemer, H. K., Warzok, R. W., and Vogelgesang, S. (2007) MDR1-P-Glycopro-tein (ABCB1) Mediates transport of Alzheimer's amyloid-beta peptides–implications for the mechanisms of Abeta clearance at the blood-brain barrier. Brain Pathol. 17, 347– 353 34Tanzi, R. E., Moir, R. D., and Wagner, S. L. (2004) Clearance of Alzheimer's Abeta peptide: the many roads to perdition. Neuron 43, 605– 608 35Deane, R., Du Yan, S., Submamaryan, R. K., LaRue, B., Jovanovic, S., Hogg, E., Welch, D., Manness, L., Lin, C., Yu, J., Zhu, H., Ghiso, J., Frangione, B., Stern, A., Schmidt, A. M., Armstrong, D. L., Arnold, B., Liliensiek, B., Nawroth, P., Hofman, F., Kindy, M., Stern, D., and Zlokovic, B. (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9, 907– 913 36Pan, W., Kastin, A. J., Zankel, T. C., van Kerkhof, P., Terasaki, T., and Bu, G. (2004) Efficient transfer of receptor-associated protein (RAP) across the blood-brain barrier. J. Cell Sci. 117, 5071– 5078 37Bell, R. D., Sagare, A. P., Friedman, A. E., Bedi, G. S., Holtzman, D. M., Deane, R., and Zlokovic, B. V. (2007) Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J. Cereb. Blood Flow Metab. 27, 909– 918 38D'Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719– 723 39Herz, J., and Chen, Y. (2006) Reelin, lipoprotein receptors and synaptic plasticity. Nat. Rev. Neurosci. 7, 850– 859 40Chin, J., Massaro, C. M., Palop, J. J., Thwin, M. T., Yu, G. Q., Bien-Ly, N., Bender, A., and Mucke, L. (2007) Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer's disease. J. Neurosci. 27, 2727– 2733 41Plath, N., Ohana, O., Dammermann, B., Errington, M. L., Schmitz, D., Gross, C., Mao, X., Engelsberg, A., Mahlke, C., Welzl, H., Kobalz, U., Stawrakakis, A., Fernandez, E., Waltereit, R., Bick-Sander, A., Therstappen, E., Cooke, S. F., Blanquet, V., Wurst, W., Salmen, B., Bosl, M. R., Lipp, H. P., Grant, S. G., Bliss, T. V., Wolfer, D. P., and Kuhl, D. (2006) Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437– 444 42Leclerc, N., Beesley, P. W., Brown, I., Colonnier, M., Gurd, J. W., Paladino, T., and Hawkes, R. (1989) Synaptophysin expression during synaptogenesis in the rat cerebellar cortex. J. Comp. Neurol. 280, 197– 212 43Senechal, Y., Kelly, P. H., Cryan, J. F., Natt, F., and Dev, K. K. (2007) Amyloid precursor protein knockdown by siRNA impairs spontaneous alternation in adult mice. J. Neurochem. 102, 1928– 1940 44Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., and Greenough, W. T. (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc. Natl. Acad. Sci. U. S. A. 87, 5568– 5572 45Kocherhans, S., Madhusudan, A., Doehner, J., Breu, K. S., Nitsch, R. M., Fritschy, J. M., and Knuesel, I. (2010) Reduced reelin expression accelerates amyloid-beta plaque formation and tau pathology in transgenic Alzheimer's disease mice. J. Neurosci. 30, 9228– 9240 46Botella-Lopez, A., Burgaya, F., Gavin, R., Garcia-Ayllon, M. S., Gomez-Tortosa, E., Pena-Casanova, J., Urena, J. M., Del Rio, J. A., Blesa, R., Soriano, E., and Saez-Valero, J. (2006) Reelin expression and glycosylation patterns are altered in Alzheimer's disease. Proc. Natl. Acad. Sci. U. S. A. 103, 5573– 5578 47Zhao, S., Chai, X., Bock, H. H., Brunne, B., Forster, E., and Frotscher, M. (2006) Rescue of the reeler phenotype in the dentate gyrus by wild-type coculture is mediated by lipoprotein receptors for reelin and disabled 1. J. Comp. Neurol. 495, 1– 9 48Hoe, H. S., Tran, T. S., Matsuoka, Y., Howell, B. W., and Rebeck, G. W. (2006) DAB1 and reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing. J. Biol. Chem. 281, 35176– 35185 49Jankowsky, J. L., Melnikova, T., Fadale, D. J., Xu, G. M., Slunt, H. H., Gonzales, V., Younkin, L. H., Younkin, S. G., Borchelt, D. R., and Savonenko, A. V. (2005) Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer's disease. J. Neurosci. 25, 5217– 5224 50Yamashita, N., Hoshida, S., Otsu, K., Asahi, M., Kuzuya, T., and Hori, M. (1999) Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J. Exp. Med. 189, 1699– 1706 51Ma, D. K., Marchetto, M. C., Guo, J. U., Ming, G. L., Gage, F. H., and Song, H. (2010) Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat. Neurosci. 13, 1338– 1344 52Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M., and Tsai, L. H. (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178– 182 53Carone, B. R., Fauquier, L., Habib, N., Shea, J. M., Hart, C. E., Li, R., Bock, C., Li, C., Gu, H., Zamore, P. D., Meissner, A., Weng, Z., Hofmann, H. A., Friedman, N., and Rando, O. J. (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084– 1096 Citing Literature Volume26, Issue1January 2012Pages 117-128 ReferencesRelatedInformation
Referência(s)