Artigo Revisado por pares

Understanding reactivity with Kohn-Sham molecular orbital theory: E2-SN2 mechanistic spectrum and other concepts

1999; Wiley; Volume: 20; Issue: 1 Linguagem: Inglês

10.1002/(sici)1096-987x(19990115)20

ISSN

1096-987X

Autores

F. Matthias Bickelhaupt,

Tópico(s)

Coordination Chemistry and Organometallics

Resumo

Journal of Computational ChemistryVolume 20, Issue 1 p. 114-128 Full Access Understanding reactivity with Kohn–Sham molecular orbital theory: E2–SN2 mechanistic spectrum and other concepts F. Matthias Bickelhaupt, Corresponding Author F. Matthias Bickelhaupt [email protected] Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, GermanyFachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, GermanySearch for more papers by this author F. Matthias Bickelhaupt, Corresponding Author F. Matthias Bickelhaupt [email protected] Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, GermanyFachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, GermanySearch for more papers by this author First published: 07 January 1999 https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1 3.0.CO;2-LCitations: 479AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract On the basis of Kohn–Sham density functional (DFT) investigations on elementary organic and organometallic reactions, we show how a detailed understanding of the electronic structure of a reaction system can help recognize certain characteristics of the process, yielding valuable mechanistic concepts. The concept of the base as a selective catalyst in E2 eliminations, for example, leads to a straightforward explanation for the general preference for anti over syn stereochemistry in base-induced elimination reactions. Furthermore, electronic structure considerations provide the so-called E2–SN2 mechanistic spectrum, in terms of which one can interpret and understand the competition between elimination and substitution reactions and the shift, on solvation, of the reactivity from E2 to SN2. In addition, mechanistic concepts from organometallic and organic chemistry are linked as we argue that oxidative addition may be conceived, in some respect, as the organometallic analog of the frontside SN2 substitution. Finally, we introduce the ideas of “activation strain” of and “transition state interaction” between the deformed reactants in the activated complex, which together determine the activation energy, ΔE*=ΔE+ΔE. They prove to be helpful conceptual tools for understanding in detail how activation barriers and relative efficiencies of competing reaction mechanisms arise and how they may be affected (e.g., by changing reactants or by solvation). © 1999 John Wiley & Sons, Inc. J Comput Chem 20: 114–128, 1999 References 1 (a) Dreizler, R. M.; Gross, E. K. U. Density Functional Theory, An approach to the Quantum Many-Body Problem; Springer: Berlin, 1990; (b) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989; (c) Dunitz, J. D.; Hafner, K.; Houk, K. N.; Ito, S.; Lehn, J.-M.; Raymond, K. N.; Rees, C. W.; Thiem, J.; Vögtle, F. Topics in Current Chemistry, Vols. 180, 181; Springer: Berlin, 1996; (d) Hohenberg, P.; Kohn, W. Phys Rev 1964, 136, 864; (e) Kohn, W.; Sham, L. J. Phys Rev A 1965, 140, 1133. 2 (a) Ziegler, T. Can J Chem 1995, 73, 743; (b) Ziegler, T. Chem Rev 1991, 91, 651; (c) J. K. Labanowski; J. W. Andzelm (Eds.), Density Functional Methods in Chemistry; Springer: New York, 1991; (d) Laird, B. B.; Ross, R. B.; Ziegler, T. (Eds.) Chemical Applications of Density Functional Theory; American Chemical Society: Washington, DC, 1996; (e) Dunitz, J. D.; Hafner, K.; Houk, K. N.; Ito, S.; Lehn, J.-M.; Raymond, K. N.; Rees, C. W.; Thiem, J.; Vögtle, F. Topics in Current Chemistry, Vols. 182 and 183; Springer: Berlin, 1996; (f) Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theor Chem Acc (in press); (g) te Velde, G. Thesis, Vrije Universiteit, Amsterdam, The Netherlands, 1990; (h) van den Hoek, P. J.; Kleyn, A. W.; Baerends, E. J. Comm Atom Mol Phys 1989, 23, 93. 3 (a) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A. J Chem Phys 1998, 109, 42; (b) Redfern, P. C.; Blaudeau, J.-P.; Curtiss, L. A. J Phys Chem A 1997, 101, 8701; (c) Becke, A. D. J Chem Phys 1993, 98, 1372, 5648; (d) J Chem Phys 1993, 97, 9173; (e) J Chem Phys 1992, 96, 2155; (f) Murray, C.; Laming, N. C.; Handy, N. C.; Chem Phys Lett 1992, 199, 551; (g) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys Rev B 1992, 46, 6671. 4 Bickelhaupt, F. M.; Baerends, E. J. Rev Comput Chem (submitted). 5 (a) Hoffmann, R. Angew Chem 1982, 94, 725; Angew Chem Int Ed Engl 1982, 21, 711; (b) Hoffmann, R. Solids and Surfaces: A Chemists View of Bonding in Extended Structures; VCH: Weinheim, 1988. 6 (a) Rauk, A. Orbital Interaction Theory of Organic Chemistry; Wiley: New York, 1994; (b) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry; Wiley: New York, 1985; (c) Gimarc, B. M. Molecular Structure and Bonding; Academic: New York, 1979; (d) Fleming, I. Frontier Orbitals and Organic Chemical Reactions; Wiley: London, 1976. 7 (a) Shaik, S. S. J Am Chem Soc 1981, 103, 3692; (b) Pross, A.; Shaik, S. S. Acc Chem Res 1983, 16, 363; (c) Shaik, S. S.; Schlegel, H. B.; Wolfe, S. Theoretical Aspects of Physical Organic Chemistry; Wiley: New York, 1992; Chapter 3; (d) Shaik, S.; Hiberty, P. C. Adv Quantum Chem 1995, 26, 99. See also: (e) McWeeny, R. Methods of Molecular Quantum Mechanics; Academic: London, 1992; Chapter 7. 8 (a) Bickelhaupt, F. M.; Nibbering, N. M. M.; van Wezenbeek, E. M.; Baerends, E. J. J Phys Chem 1992, 96, 4864; (b) Bickelhaupt, F. M.; Bickelhaupt, F. Chem Eur J (in press); (c) Bickelhaupt, F. M.; Diefenbach, A.; de Visser, S. V.; de Koning, L. J.; Nibbering, N. M. M. J Phys Chem A (in press); (d) Bickelhaupt, F. M.; Ziegler, T.; Schleyer, P. v. R. Organometallics 1996, 15, 1477; (e) Bickelhaupt, F. M.; van Eikema Hommes, N. J. R.; Fonseca Guerra, C.; Baerends, E. J. Organometallics 1996, 15, 2923. 9 (a) Bickelhaupt, F. M.; Nibbering, N. M. M.; Baerends, E. J.; Ziegler, T. J Am Chem Soc 1993, 115, 9160; (b) Bickelhaupt, F. M.; Baerends, E. J.; Nibbering, N. M. M. Chem Eur J 1996, 2, 196; (c) Bickelhaupt, F. M.; Diefenbach, A.; Baerends, E. J.; (to be submitted); (d) Bickelhaupt, F. M.; Ziegler, T.; Schleyer, P. v. R. Organometallics 1995, 14, 2288. 10 (a) Baerends, E. J.; Gritsenko, O. V. J Phys Chem A 1997, 101, 5383; (b) Baerends, E. J.; Gritsenko, O. V.; van Leeuwen, R. In C. A. Tsipis; V. S. Popov; D. R. Herschbach; J. A. Avery (Eds.) New Methods in Quantum Theory, Vol. 8; Kluwer: Dordrecht, 1996; (c) Baerends, E. J.; Gritsenko, O. V.; van Leeuwen, R. See ref. 2d, p. 20. 11 (a) Ziegler, T.; Rauk, A. Inorg Chem 1979, 18, 1558; (b) Ziegler, T.; Rauk, A. Inorg Chem 1979, 18, 1755; (c) Ziegler, T.; Rauk, A. Theor Chim Acta 1977, 46, 1. 12 (a) Morokuma, K. J Chem Phys 1971, 55, 1236; (b) Kitaura, K.; Morokuma, K. Int J Quantum Chem 1976, 10, 325; (c) Stone, A. J.; Erskine, R. W. J Am Chem Soc 1980, 102, 7185; (d) Bernardi, F.; Bottoni, A.; Mangini, A.; Tonachini, G. J Molec Struct (Theochem) 1981, 86, 163; (e) Post, D.; Baerends, E. J. J Chem Phys 1983, 78, 5663; (f) Dapprich, S.; Frenking, G. J Phys Chem 1995, 99, 9352. 13 (a) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 2nd Ed.; Harper and Row: New York, 1981; (b) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, Part A; Plenum: New York, 1984; (c) March, J. Advanced Organic Chemistry, 4th Ed., Wiley: New York, 1992; (d) Isaacs, N. S. Physical Organic Chemistry, 2nd Ed., Longman: Harlow, UK, 1995. (e) Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 2nd Ed., VCH: Weinheim, 1988. 14 (a) Bartsch, R. A.; Závada, J. Chem Rev 1980, 80, 453; (b) Baciocchi, E. Acc Chem Res 1979, 12, 430; (c) Saunders, W. H., Jr. Acc Chem Res 1976, 9, 19; (d) Bunnett, J. F. Angew Chem 1962, 74, 731; (e) Cram, D. J.; Greene, F. D.; DePuy, C. H. J Am Chem Soc 1956, 78, 790; (f) McLennan, D. J. Tetrahedron 1975, 31, 2999; (g) Biale, G.; Cook, D.; Lloyd, D. J.; Parker, A. J.; Stevens, I. D. R.; Takahashi, J.; Winstein, S. J Am Chem Soc 1971, 93, 4735; (h) Parker, A. J.; Ruane, M.; Biale, G.; Winstein, S. Tetrahed Lett 1968, 2113; (i) Pirinccioglu, N.; Thibblin, A. J Am Chem Soc 1998, 120, 6512; (j) Meng, Q.; Thibblin, A. J Am Chem Soc 1995, 117, 9399. 15 (a) Bickelhaupt, F. M.; Buisman, G. H. J.; de Koning, L. J.; Nibbering, N. M. M.; Baerends, E. J. J Am Chem Soc 1995, 117, 9889; (b) Bickelhaupt, F. M. Recl Trav Chim Pays-Bas 1993, 112, 469; (c) Bickelhaupt, F. M.; de Koning, L. J.; Nibbering, N. M. M. J Org Chem 1993, 58, 2436; (d) Occhiucci, G.; Speranza, M.; de Koning, L. J.; Nibbering, N. M. M. J Am Chem Soc 1989, 111, 7387; (e) de Koning, L. J. Nibbering, N. M. M. J Am Chem Soc 1987, 109, 1715. 16 (a) DeTuri, V. F.; Hintz, P. A.; Ervin, K. M. J Phys Chem A 1997, 101, 5969; (b) Li, C.; Ross, P.; Szulejko, J. E.; McMahon, T. B. J Am Chem Soc 1996, 118, 9360; (c) Rabasco, J. J.; Gronert, S.; Kass, S. R. J Am Chem Soc 1994, 116, 3133; (d) Lum, R. C.; Grabowski, J. J. J Am Chem Soc 1992, 114, 9663; (e) Grabowski, J. J.; Lum, R. C. J Am Chem Soc 1990, 112, 607; (f) DePuy, C. H.; Gronert, S.; Mullin, A.; Bierbaum, V. M. J Am Chem Soc 1990, 112, 8650; (g) Jones, M. E.; Ellison, G. B. J Am Chem Soc 1989, 111, 1645; (h) Bierbaum, V. M.; Filley, J.; DePuy, C. H.; Jarrold, M. F.; Bowers, M. T. J Am Chem Soc 1985, 107, 2818; (i) Ridge, D. P.; Beauchamp, J. L. J Am Chem Soc 1974, 96, 637. 17 (a) Nibbering, N. M. M. Acc Chem Res 1990, 23, 279; (b) Riveros, J. M.; José, S. M.; Takashima, K. Adv Phys Org Chem 1985, 21, 197; (c) Olmstead, W. N.; Brauman, J. I. J Am Chem Soc 1977, 99, 4219; (d) Graul, S. T.; Bowers, M. T. J Am Chem Soc 1991, 113, 9696; (e) Cyr, D. M.; Posey, L. A.; Bishea, G. A.; Han, C.-C.; Johnson, M. A. J Am Chem Soc 1991, 113, 9697; (f) Wilbur, J. L.; Brauman, J. I. J Am Chem Soc 1991, 113, 9699. 18 (a) A negative activation energy does not imply the complete absence of any barrier. The reaction is still “hampered” by a statistical or entropic bottleneck that is associated with the decrease in the number of available quantum states (e.g., of translation, rotation, and vibration) as one goes from the separate, unbound reactants to the “tightly” bound transition states. See, for example, refs. 17a, b and McClelland, B. J. Statistical Thermodynamics; Chapman and Hall: London, 1973; Chapter 12. (b) As pointed out in ref. 9a, both the energetic and the entropic barrier reveal the same trend for the competition of the reaction pathways investigated for our gas-phase F−+C2H5F model system: (i) anti-E2 prevails over syn-E2 elimination; and (ii) E2 elimination dominates over SN2 substitution. 19 (a) Nielsen, P. A.; Glad, S. S.; Jensen, F. J Am Chem Soc 1996, 118, 10577; (b) Hu, W.-P.; Truhlar, D. G. J Am Chem Soc 1996, 118, 860; (c) Glad, S. S.; Jensen, F. J Am Chem Soc 1994, 116, 9302; (d) Gronert, S.; Kass, S. R. J Org Chem 1997, 62, 7991; (e) Merrill, G. N.; Gronert, S.; Kass, S. R. J Phys Chem A 1997, 101, 208; (f) Gronert, S. J Am Chem Soc 1993, 115, 652; (g) J Am Chem Soc 1992, 114, 2349; (h) J Am Chem Soc 1991, 113, 6041; (i) Dewar, M. J. S.; Yuan, Y.-C. J Am Chem Soc 1990, 112, 2088, 2095; (j) Minato, T.; Yamabe, S. J Am Chem Soc 1988, 110, 4586; (k) J Am Chem Soc 1985, 107, 4621; (l) Pross, A.; Shaik, S. S. J Am Chem Soc 1982, 104, 187. 20 (a) Clary, D. C.; Palma, J. J Chem Phys 1997, 106, 575; (b) Glukhovtsev, M. N.; Pross, A.; Schlegel, H. B.; Bach, R. D.; Radom, L. J Am Chem Soc 1996, 118, 11258; (c) Deng, L.; Branchadell, V.; Ziegler, T. J Am Chem Soc 1994, 116, 10645; (d) Poirier, R. A.; Wang, Y.; Westatway, K. C. J Am Chem Soc 1994, 116, 2526; (e) Sini, G.; Shaik, S.; Hiberty, P. C. J Chem Soc Perkin Trans 2 1992, 1019; (f) Shi, Z.; Boyd, R. J. J Am Chem Soc 1991, 113, 1072; (g) Vande Linde, S. R.; Hase, W. L. J Phys Chem 1990, 94, 6148; (h) Carrion, F.; Dewar, M. J. S. J Am Chem Soc 1984, 106, 3531; (i) Wolfe, S.; Mitchell, D. J.; Schlegel, H. B. J Am Chem Soc 1981, 103, 7692, 7694. 21 (a) Ferguson, H. A.; Ferguson, J. D.; Holmes, B. E. J Phys Chem 1998, 102, 5393; (b) Kato, S.; Morokuma, K. J Chem Phys 1980, 73, 3900. 22 In addition, the leaving group is further removed from and therefore has less electrostatic repulsion with the attacking base in the anti-E2 transition state. 23 For experimental work on microsolvation, see: (a) Seeley, J. V.; Morris, R. A.; Viggiano, A. A.; Wang, H.; Hase, W. L. J Am Chem Soc 1997, 119, 577; (b) O'Hair, R. A. J.; Davico, G. E.; Hacaloglu, J.; Dang, T. T.; DePuy, C. H.; Bierbaum, V. M. J Am Chem Soc 1994, 116, 3609; (c) Freriks, I. L.; de Koning, L. J.; Nibbering, N. M. M.; J Org Chem 1992, 57, 5976; (d) van der Wel, H.; Nibbering, N. M. M.; Sheldon, J. C.; Hayes, R. N.; Bowie, J. H. J Am Chem Soc 1987, 109, 5823; (e) Hierl, P. M.; Ahrens, A. F.; Henchman, M.; Viggiano, A. A.; Paulson, J. F.; Clary, D. C. J Am Chem Soc 1986, 108, 3142; (f) Henchman, M.; Hierl, P. M.; Paulson, J. F. J Am Chem Soc 1985, 107, 2812; (g) Bohme, D. K.; Raksit, A. B. Can J Chem 1985, 63, 3007; (h) Bohme, D. K.; Raksit, A. B. J Am Chem Soc 1984, 106, 3447; (i) Henchman, M.; Paulson, J. F.; Hierl, P. M. J Am Chem Soc 1983, 105, 5509; (j) Bohme, D. K.; Mackay, G. I. J Am Chem Soc 1981, 103, 978. 24 For other theoretical work on microsolvation, see: (a) Hirao, K.; Kebarle, P. Can J Chem 1989, 67, 1261; (b) Ohta, K.; Morokuma, K. J Phys Chem 1985, 89, 5845; (c) Dewar, M. J. S.; Storch, D. M. J Chem Soc Chem Commun 1985, 94; (d) Jaume, J.; Lluch, J. M.; Oliva, A.; Bertrán, J. Chem Phys Lett 1984, 106, 232; (e) Yamabe, S.; Yamabe, E.; Minato, T. J Chem Soc Perkin Trans 2 1983, 1881. (f) Morokuma, K. J Am Chem Soc 1982, 104, 3732; (g) Novoa, J. J.; Mota, F.; Perez del Valle, C.; Planas, M. J Phys Chem 1997, 101, 7842. 25 (a) Hu, W.-P.; Truhlar, D. G. J Am Chem Soc 1994, 116, 7797; (b) Zhao, X. G.; Tucker, S. C.; Truhlar, D. G. J Am Chem Soc 1991, 113, 826; (c) Tucker, S. C.; Truhlar, D. G. J Am Chem Soc 1990, 112, 3338, 3347. 26 Occhiucci, G.; Speranza, M.; de Koning, L. J.; Nibbering, N. M. M. J Am Chem Soc 1989, 111, 7387. 27 (a) Elschenbroich, C.; Salzer, A. Organometallics. A Concise Introduction, 2nd Ed.; VCH: Weinheim, 1992; (b) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987. 28 (a) Rendina, L. M.; Puddephatt, R. J. Chem Rev 1997, 97, 1735; (b) Gandelman, M.; Vigalok, A.; Shimon, L. J. W.; Milstein, D. Organometallics 1997, 16, 3981; (c) Wick, D. D.; Goldberg, K. I. J Am Chem Soc 1997, 119, 10235; (d) Crabtree, R. H. Chem Rev 1995, 95, 987; (e) Grushin, V. V.; Alper, H. Chem Rev 1994, 94, 1047; (f) Wright, M. W.; Smalley, T. L.; Welker, M. E.; Rheingold, A. L. J Am Chem Soc 1994, 116, 6777; (g) Sakakura, T.; Sodeyama, T.; Sasaki, K.; Wada, K.; Tanaka, M. J Am Chem Soc 1990, 112, 7221; (h) Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J Am Chem Soc 1988, 110, 6738; (i) Janowicz, A. H.; Bergman, R. G. J Am Chem Soc 1983, 105, 3929. 29 (a) Schwarz, J.; Heinemann, C.; Schröder, D.; Schwarz, H. Helv Chim Acta 1996, 79, 1; (b) Carpenter, C. J.; van Koppen, P. A. M.; Bowers, M. T. J Am Chem Soc 1995, 117, 10976; (c) Chen, Y.-M.; Clemmer, D. E.; Armentrout, P. B. J Am Chem Soc 1994, 116, 7815; (d) Wesendrup, R.; Schröder, D.; Schwarz, H. Angew Chem 1994, 105, 1232; (e) van den Berg, K. J.; Ingemann, S.; Nibbering, N. M. M.; Gregor, I. K.; Rapid Common Mass Spectrom 1993, 7, 769; (f) Eller, K.; Schwarz, H. Chem Rev 1991, 91, 1121; (g) Armentrout, P. B.; Beauchamp, J. L. Acc Chem Res 1989, 22, 315. 30 (a) Chowdhury, A. K.; Wilkins, C. L. J Am Chem Soc 1987, 109, 5336; (b) Weil, D. A.; Wilkins, C. L. J Am Chem Soc 1985, 107, 7316; (c) Jones, R. W.; Staley, R. H. J Phys Chem 1982, 86, 1669; (d) Jones, R. W.; Staley, R. H. J Am Chem Soc 1980, 102, 3794. 31 (a) Chertihin, G. V.; Andrews, L. J Am Chem Soc 1994, 116, 8322; (b) Ritter, D.; Weisshaar, J. C. J Am Chem Soc 1990, 112, 6425; (c) Mitchell, S. A.; Hackett, P. A. J Chem Phys 1990, 93, 7822. 32 (a) Bickelhaupt, F. M.; Radius, U.; Ehlers, A. W.; Hoffmann, R.; Baerends, E. J. New J Chem 1998, 1; (b) Radius, U.; Bickelhaupt, F. M.; Ehlers, A. W.; Goldberg, N.; Hoffmann, R. Inorg Chem 1998, 37, 1080; (c) Cotton, F. A.; Feng, X. J Am Chem Soc 1997, 119, 7514; (d) Yoshizawa, K.; Ohta, T.; Yamabe, T.; Hoffmann, R. J Am Chem Soc 1997, 119, 12311; (e) Ehlers, A. W.; Dapprich, S.; Vyboishchikov, S. F.; Frenking, G. Organometallics 1996, 15, 105; (f) Irikura, K. K.; Goddard, W. A., III. J Am Chem Soc 1994, 116, 8733; (g) Perry, J. K.; Goddard, W. A., III. J Am Chem Soc 1994, 116, 5013; (h) Bickelhaupt, F. M.; Baerends, E. J.; Ravenek, W. Inorg Chem 1990, 29, 350; (i) Koga, N.; Morokuma, K. Chem Rev 1991, 91, 823; (j) Ziegler, T.; Tschinke, V.; Fan, L.; Becke, A. D. J Am Chem Soc 1989, 111, 9177. 33 (a) Griffin, T. R.; Cook, D. B.; Haynes, A.; Pearson, J. M.; Monti, D.; Morris, G. E. J Am Chem Soc 1996, 118, 3029; (b) Aullón, G.; Alvarez, S. Inorg Chem 1996, 35, 3137; (c) Hinderling, C.; Feichtinger, D.; Plattner, D. A.; Chen, P. J Am Chem Soc 1997, 119, 10793; (d) Cui, Q.; Musaev, D. G.; Morokuma, K. J Chem Phys 1998, 108, 8418; (e) Su, M.-D.; Chu, S.-Y. Inorg Chem 1998, 37, 3400. 34 (a) Hendrickx, M.; Ceulemans, M.; Gong, K.; Vanquickenborne, L. J Phys Chem A 1997, 101, 8540; (b) Perry, J. K.; Ohanessian, G.; Goddard, W. A., III. Organometallics 1994, 13, 1870; (c) Siegbahn, P. E. M. Organometallics 1994, 13, 2833; (d) Siegbahn, P. E. M.; Blomberg, M. R. A.; Svensson, M. J Am Chem Soc 1993, 115, 1952. 35 (a) Siegbahn, P. E. M. J Am Chem Soc 1994, 116, 7722; (b) Siegbahn, P. E. M.; Blomberg, M. R. A.; Svensson, M. J Phys Chem 1993, 97, 2564; (c) Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. Inorg Chem 1993, 32, 4218; (d) Siegbahn, P. E. M.; Blomberg, M. R. A.; Svensson, M. J Am Chem Soc 1993, 115, 4191; (e) Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. J Am Chem Soc 1992, 114, 6095; (f) Svensson, M.; Blomberg, M. R. A.; Siegbahn, P. E. M. J Am Chem Soc 1991, 113, 7076. 36 (a) Ref. 27b, Chapter 12; (b) Hickey, C. E.; Maitlis, P. M. J Chem Soc Chem Commun 1984, 1609; (c) Forster, D. Adv Organometal Chem 1979, 17, 255; (d) Forster, D. J Am Chem Soc 1975, 97, 951; (e) J Am Chem Soc 1976, 98, 846. 37 Bickelhaupt, F. M. Unpublished results. Citing Literature Volume20, Issue1Special Issue: Progress in Density Functional Theory15 January 1999Pages 114-128 ReferencesRelatedInformation

Referência(s)