On the sausage catastrophe in 4‐space
1992; Wiley; Volume: 39; Issue: 2 Linguagem: Inglês
10.1112/s0025579300015011
ISSN2041-7942
AutoresPier Mario Gandini, Andreana Zucco,
Tópico(s)Optimization and Packing Problems
ResumoMathematikaVolume 39, Issue 2 p. 274-278 Research Article On the sausage catastrophe in 4-space Pier Mario Gandini, Pier Mario Gandini Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, ItalySearch for more papers by this authorAndreana Zucco, Andreana Zucco Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, ItalySearch for more papers by this author Pier Mario Gandini, Pier Mario Gandini Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, ItalySearch for more papers by this authorAndreana Zucco, Andreana Zucco Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, ItalySearch for more papers by this author First published: 01 December 1992 https://doi.org/10.1112/S0025579300015011Citations: 3AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat Summary An upper bound for the "sausage catastrophe" of dense sphere packings in 4-space is given. A basic problem in the theory of finite packing is to determine, for a given positive integer k, the minimal volume of all convex bodies into which k translates of the unit ball Bd of the Euclidean d-dimensional space Ed can be packed ([5]). For d = 2 this problem was solved by Groemer ([6]). Citing Literature Volume39, Issue2December 1992Pages 274-278 RelatedInformation
Referência(s)