Crystallization of Amorphous Tris(8-hydroxyquinoline)aluminum Nanoparticles and Transformation to Nanowires
2006; Wiley; Volume: 16; Issue: 6 Linguagem: Inglês
10.1002/adfm.200500631
ISSN1616-3028
AutoresChun‐Pei Cho, Chengkun Wu, Tsong‐Pyng Perng,
Tópico(s)Ferroelectric and Piezoelectric Materials
ResumoAdvanced Functional MaterialsVolume 16, Issue 6 p. 819-823 Full Paper Crystallization of Amorphous Tris(8-hydroxyquinoline)aluminum Nanoparticles and Transformation to Nanowires† C.-P. Cho, C.-P. Cho Department of Materials Science and Engineering, National Tsinghua University, Hsinchu 30043, TaiwanSearch for more papers by this authorC.-A. Wu, C.-A. Wu Department of Materials Science and Engineering, National Tsinghua University, Hsinchu 30043, TaiwanSearch for more papers by this authorT.-P. Perng, T.-P. Perng [email protected] Department of Materials Science and Engineering, National Tsinghua University, Hsinchu 30043, TaiwanSearch for more papers by this author C.-P. Cho, C.-P. Cho Department of Materials Science and Engineering, National Tsinghua University, Hsinchu 30043, TaiwanSearch for more papers by this authorC.-A. Wu, C.-A. Wu Department of Materials Science and Engineering, National Tsinghua University, Hsinchu 30043, TaiwanSearch for more papers by this authorT.-P. Perng, T.-P. Perng [email protected] Department of Materials Science and Engineering, National Tsinghua University, Hsinchu 30043, TaiwanSearch for more papers by this author First published: 16 February 2006 https://doi.org/10.1002/adfm.200500631Citations: 58 † This work was supported by the National Science Council of Taiwan under Contract No. NSC 93-2216-E-007-034 and the Ministry of Education of Taiwan under Contract No. A-91-E-FA04-1-4. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Amorphous tris(8-hydroxyquinoline)aluminum (AlQ3) nanoparticles can be grown directly into α-phase crystalline nanowires in a one-step heat treatment. At the most appropriate Ar pressure, heating time, and heating temperatures (between 150 and 190 °C), fine and long nanowires are obtained. The growth of the nanowires is dictated by the anisotropic bonding in α-AlQ3 crystals. The growth mechanism is illustrated by the concept of nucleation and molecular migration. Two exotherms are revealed, from differential scanning calorimetry analyses, in the transformation process of AlQ3 amorphous nanoparticles to crystalline nanowires. The first exotherm is the transition from amorphous nanoparticles to the γ-phase, and the second exotherm is the transition from the γ- to the α-phase. By means of Kissinger plots, the activation energies for the crystallization of the γ-phase and the transition from the γ- to the α-phase are calculated, for the first time, to be 9.7 and 12.1 kJ mol–1, respectively. A blue-shift and higher intensity of photoluminescence after heat treatment are also demonstrated. REFERENCES 1 P. Alivisatos, P. F. Barbara, A. W. Castleman, J. Chang, D. A. Dixon, M. L. Kline, G. L. McLendon, J. S. Miller, M. A. Ratner, P. J. Rossky, S. I. Stupp, M. I. Thompson, Adv. Mater. 1998, 10, 1297. 2 T. Bein, G. D. Stucky, Chem. Mater. 1996, 8, 1569. 3 A. Thiaville, J. Miltat, Science 1999, 284, 1939. 4 Z. Tang, N. A. Kotov, M. Giersig, Science 2002, 297, 237. 5 M. Trau, S. A. Sankaran, D. A. Saville, I. A. Aksay, Nature 1995, 374, 437. 6 B. A. Korgel, D. Fitzmaurice, Adv. Mater. 1998, 10, 661. 7 D. Wyrwa, N. Beyer, G. Schmid, Nano Lett. 2002, 2, 419. 8 Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan, Adv. Mater. 2003, 15, 353. 9 M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, A. Sironi, J. Am. Chem. Soc. 2000, 122, 5147. 10 M. Cölle, W. Brütting, Phys. Status Solidi A 2004, 201, 1095. 11 C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913. 12 J. J. Chiu, C. C. Kei, T. P. Perng, W. S. Wang, Adv. Mater. 2003, 15, 1361. 13 J. J. Chiu, W. S. Wang, C. C. Kei, C. P. Cho, T. P. Perng, P. K. Wei, S. Y. Chiu, Appl. Phys. Lett. 2003, 83, 4607. 14 J. J. Chiu, W. S. Wang, C. C. Kei, T. P. Perng, Appl. Phys. Lett. 2003, 83, 347. 15 C. P. Cho, C. Y. Yu, T. P. Perng, unpublished. 16 M. Cölle, R. E. Dinnebier, W. Brütting, Chem. Commun. 2002, 2908. 17 M. Cölle, J. Gmeiner, W. Milius, H. Hillebrecht, W. Brütting, Adv. Funct. Mater. 2003, 13, 108. 18 L. S. Sapochak, A. Padmaperuma, N. Washton, F. Endrino, G. T. Schmett, J. Marshall, D. Fogarty, P. E. Burrows, S. R. Forrest, J. Am. Chem. Soc. 2001, 123, 6300. 19 K. Naito, A. Miura, J. Phys. Chem. 1993, 97, 6240. 20 Y. Khan, E. Kneller, M. Sostarich, Z. Metallkd. 1981, 72, 553. 21 Y. Khan, E. Kneller, M. Sostarich, Z. Metallkd. 1982, 73, 624. 22 H. E. Kissinger, Anal. Chem. 1957, 29, 1702. 23 B. Z. Li, J. Y. Yu, S. W. Lee, M. H. Ree, Polymer 1999, 40, 5371. 24 S. L. Liu, T. S. Chung, Polymer 2000, 41, 2781. 25 G. X. Chen, J. S. Yoon, J. Polym. Sci. B 2005, 43, 817. 26 D. S. Qin, D. C. Li, Y. Wang, J. D. Zhang, Z. Y. Xie, G. Wang, L. X. Wang, D. H. Yan, Appl. Phys. Lett. 2001, 78, 437. 27 J. M. Chung, Y. Z. Luo, Z. A. Jian, M. C. Kuo, C. S. Yang, W. C. Chou, K. C. Chiu, Jpn. J. Appl. Phys., Part 1 2004, 43, 1631. 28 A. B. Djurišic, T. W. Lau, L. S. M. Lam, W. K. Chan, Appl. Phys. A—Mater. Sci. Process. 2004, 78, 375. 29 K. A. Higginson, X. M. Zhang, F. Papadimitrakopoulos, Chem. Mater. 1998, 10, 1017. 30 F. Papadimitrakopoulos, X. M. Zhang, K. A. Higginson, IEEE. J. Sel. Top. Quant. 1998, 4, 49. 31 A. Curioni, M. Boero, W. Andreoni, Chem. Phys. Lett. 1998, 294, 263. Citing Literature Volume16, Issue6April, 2006Pages 819-823 ReferencesRelatedInformation
Referência(s)