Artigo Acesso aberto Revisado por pares

A Survey of Collaborative Filtering Techniques

2009; Hindawi Publishing Corporation; Volume: 2009; Linguagem: Inglês

10.1155/2009/421425

ISSN

1687-7489

Autores

Xiaoyuan Su, Taghi M. Khoshgoftaar,

Tópico(s)

Mobile Crowdsensing and Crowdsourcing

Resumo

As one of the most successful approaches to building recommender systems, collaborative filtering ( CF ) uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. In this paper, we first introduce CF tasks and their main challenges, such as data sparsity, scalability, synonymy, gray sheep, shilling attacks, privacy protection, etc., and their possible solutions. We then present three main categories of CF techniques: memory-based, model-based, and hybrid CF algorithms (that combine CF with other recommendation techniques), with examples for representative algorithms of each category, and analysis of their predictive performance and their ability to address the challenges. From basic techniques to the state-of-the-art, we attempt to present a comprehensive survey for CF techniques, which can be served as a roadmap for research and practice in this area.

Referência(s)