Revisão Acesso aberto Revisado por pares

Multi-system disorders of glycosphingolipid and ganglioside metabolism

2010; Elsevier BV; Volume: 51; Issue: 7 Linguagem: Inglês

10.1194/jlr.r003996

ISSN

1539-7262

Autores

Yongping Xu, Sonya Barnes, Ying Sun, Gregory A. Grabowski,

Tópico(s)

Sphingolipid Metabolism and Signaling

Resumo

Glycosphingolipids (GSLs) and gangliosides are a group of bioactive glycolipids that include cerebrosides, globosides, and gangliosides. These lipids play major roles in signal transduction, cell adhesion, modulating growth factor/hormone receptor, antigen recognition, and protein trafficking. Specific genetic defects in lysosomal hydrolases disrupt normal GSL and ganglioside metabolism leading to their excess accumulation in cellular compartments, particularly in the lysosome, i.e., lysosomal storage diseases (LSDs). The storage diseases of GSLs and gangliosides affect all organ systems, but the central nervous system (CNS) is primarily involved in many. Current treatments can attenuate the visceral disease, but the management of CNS involvement remains an unmet medical need. Early interventions that alter the CNS disease have shown promise in delaying neurologic involvement in several CNS LSDs. Consequently, effective treatment for such devastating inherited diseases requires an understanding of the early developmental and pathological mechanisms of GSL and ganglioside flux (synthesis and degradation) that underlie the CNS diseases. These are the focus of this review. Glycosphingolipids (GSLs) and gangliosides are a group of bioactive glycolipids that include cerebrosides, globosides, and gangliosides. These lipids play major roles in signal transduction, cell adhesion, modulating growth factor/hormone receptor, antigen recognition, and protein trafficking. Specific genetic defects in lysosomal hydrolases disrupt normal GSL and ganglioside metabolism leading to their excess accumulation in cellular compartments, particularly in the lysosome, i.e., lysosomal storage diseases (LSDs). The storage diseases of GSLs and gangliosides affect all organ systems, but the central nervous system (CNS) is primarily involved in many. Current treatments can attenuate the visceral disease, but the management of CNS involvement remains an unmet medical need. Early interventions that alter the CNS disease have shown promise in delaying neurologic involvement in several CNS LSDs. Consequently, effective treatment for such devastating inherited diseases requires an understanding of the early developmental and pathological mechanisms of GSL and ganglioside flux (synthesis and degradation) that underlie the CNS diseases. These are the focus of this review. Glycosphingolipids (GSLs) consist of ceramide and one or more attached carbohydrates. The nature of the oligosaccharide head groups categorizes the GSLs into neutral or acidic types due to the absence or presence of sialic acid residues, respectively (Fig. 1). Gangliosides are sialic acid containing GSLs. In eukaryotic cells, GSLs and gangliosides compose 10–20% of the total lipids (1.Holthuis J.C. Pomorski T. Raggers R.J. Sprong H. Van Meer G. The organizing potential of sphingolipids in intracellular membrane transport.Physiol. Rev. 2001; 81: 1689-1723Crossref PubMed Scopus (233) Google Scholar), which are important to a variety of cellular functions. GSLs and gangliosides are synthesized at the endoplasmic reticulum (ER) and are remodeled during transit from cis to trans Golgi by a series of glycosyl- and sialyl-transferases. These are then transported to the intracellular compartments and the plasma membrane where they become enriched in microdomains and membrane bilayers. During plasma membrane turnover, GSLs and gangliosides can be internalized and partially or completely degraded in the endosomal/lysosomal system to sphingosine and free fatty acids that are then transported or flipped across late endosomal and lysosomal membranes for recycling or for use as signaling molecules (2.Kolter T. Sandhoff K. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids.Annu. Rev. Cell Dev. Biol. 2005; 21: 81-103Crossref PubMed Scopus (317) Google Scholar, 3.Lahiri S. Futerman A.H. The metabolism and function of sphingolipids and glycosphingolipids.Cell. Mol. Life Sci. 2007; 64: 2270-2284Crossref PubMed Scopus (243) Google Scholar). GSL biosynthesis begins with condensation of serine and palmitoyl-CoA catalyzed by serine-palmitoyltransferase (SPT) on the cytoplasmic face of the ER, leading to de novo biosynthesis of ceramide, the core of GSLs (Fig. 1) (3.Lahiri S. Futerman A.H. The metabolism and function of sphingolipids and glycosphingolipids.Cell. Mol. Life Sci. 2007; 64: 2270-2284Crossref PubMed Scopus (243) Google Scholar, 4.Mandon E.C. Ehses I. Rother J. van Echten G. Sandhoff K. Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver.J. Biol. Chem. 1992; 267: 11144-11148Abstract Full Text PDF PubMed Google Scholar, 5.Michel C. van Echten-Deckert G. Rother J. Sandhoff K. Wang E. Merrill Jr, A.H. Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide.J. Biol. Chem. 1997; 272: 22432-22437Abstract Full Text Full Text PDF PubMed Scopus (236) Google Scholar). Ceramide consists of a fatty acid acyl chain that varies in length and saturation, and a sphingoid base that differs in the number and position of double bonds and hydroxyl groups (6.Pruett S.T. Bushnev A. Hagedorn K. Adiga M. Haynes C.A. Sullards M.C. Liotta D.C. Merrill Jr, A.H. Biodiversity of sphingoid bases ("sphingosines") and related amino alcohols.J. Lipid Res. 2008; 49: 1621-1639Abstract Full Text Full Text PDF PubMed Scopus (287) Google Scholar, 7.Rosenthal M.D. Fatty acid metabolism of isolated mammalian cells.Prog. Lipid Res. 1987; 26: 87-124Crossref PubMed Scopus (123) Google Scholar, 8.Rother J. van Echten G. Schwarzmann G. Sandhoff K. Biosynthesis of sphingolipids: dihydroceramide and not sphinganine is desaturated by cultured cells.Biochem. Biophys. Res. Commun. 1992; 189: 14-20Crossref PubMed Scopus (128) Google Scholar). The fatty acid chain length of ceramide is controlled by tissue- and cell-specific ceramide synthases (also called longevity assurance genes) (9.Pewzner-Jung Y. Ben-Dor S. Futerman A.H. When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: insights into the regulation of ceramide synthesis.J. Biol. Chem. 2006; 281: 25001-25005Abstract Full Text Full Text PDF PubMed Scopus (333) Google Scholar). In addition, ceramide can be generated by acid sphingomyelinase (aSMase) hydrolysis of sphingomyelin in the lysosome or at the plasma membrane and by activities of secreted aSMase at the plasma membrane or associated with lipoproteins (Figs. 1 and 2) (10.Jenkins R.W. Canals D. Hannun Y.A. Roles and regulation of secretory and lysosomal acid sphingomyelinase.Cell. Signal. 2009; 21: 836-846Crossref PubMed Scopus (190) Google Scholar). Neutral sphingomyelinase (nSMase) also cleaves plasma membrane sphingomyelin to ceramide (11.Marchesini N. Hannun Y.A. Acid and neutral sphingomyelinases: roles and mechanisms of regulation.Biochem. Cell Biol. 2004; 82: 27-44Crossref PubMed Scopus (251) Google Scholar). In the salvage pathway, lysosomally derived sphingosine can be reacylated (Fig. 2) (12.Kitatani K. Sheldon K. Rajagopalan V. Anelli V. Jenkins R.W. Sun Y. Grabowski G.A. Obeid L.M. Hannun Y.A. Involvement of acid beta-glucosidase 1 in the salvage pathway of ceramide formation.J. Biol. Chem. 2009; 284: 12972-12978Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar). Once formed, ceramide is sorted to three pathways: 1) GalCer synthesis in the ER that is followed by 3-sulfo-GalCer (sulfatide) synthesis in the Golgi (13.Burkart T. Siegrist H.P. Herschkowitz N.N. Wiesmann U.N. 3′-phosphoadenylylsulfate:galactosylceramide 3′-sulfotransferase. An optimized assay in homogenates of developing brain.Biochim. Biophys. Acta. 1977; 483: 303-311Crossref PubMed Scopus (0) Google Scholar, 14.Yaghootfam A. Sorkalla T. Haberlein H. Gieselmann V. Kappler J. Eckhardt M. Cerebroside sulfotransferase forms homodimers in living cells.Biochemistry. 2007; 46: 9260-9269Crossref PubMed Scopus (12) Google Scholar); 2) GlcCer synthesis on the cytoplasmic face of the Golgi as the precursor of most GSLs; and 3) ceramide transfer protein (CERT) delivery to the mid-Golgi for sphingomyelin synthesis (15.Futerman A.H. Stieger B. Hubbard A.L. Pagano R.E. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus.J. Biol. Chem. 1990; 265: 8650-8657Abstract Full Text PDF PubMed Google Scholar, 16.Hanada K. Kumagai K. Yasuda S. Miura Y. Kawano M. Fukasawa M. Nishijima M. Molecular machinery for non-vesicular trafficking of ceramide.Nature. 2003; 426: 803-809Crossref PubMed Scopus (751) Google Scholar). In the trans Golgi lumen, the transfer of a β-galactose onto GlcCer by lactosylceramide (LacCer) synthase forms LacCer (17.Lannert H. Bunning C. Jeckel D. Wieland F.T. Lactosylceramide is synthesized in the lumen of the Golgi apparatus.FEBS Lett. 1994; 342: 91-96Crossref PubMed Scopus (84) Google Scholar). Several galactosyl-, N-acetylgalactosaminyl-, N-acetylglucosaminyl-, and sialyltransferases can elongate the oligosaccharide chain of GSLs along the luminal side of Golgi (18.Lloyd K.O. Furukawa K. Biosynthesis and functions of gangliosides: recent advances.Glycoconj. J. 1998; 15: 627-636Crossref PubMed Scopus (113) Google Scholar, 19.Iwamori M. Shimomura J. Tsuyuhara S. Nagai Y. Gangliosides of various rat tissues: distribution of ganglio-N-tetraose-containing gangliosides and tissue-characteristic composition of gangliosides.J Biochem. 1984; 95: 761-770Crossref PubMed Scopus (54) Google Scholar), thereby defining the different series of GSLs. Addition of sialic acid to LacCer forms GM3 ganglioside by LacCer α-2,3-sialyltransferase (GM3 synthase) that initiates synthesis of the ganglioside or sialo-GSL series (Fig. 1). The type of sugars in the oligosaccharide backbone depends on the activity of glycosyltransferases in the Golgi, the cell type, and the developmental or disease stage (19.Iwamori M. Shimomura J. Tsuyuhara S. Nagai Y. Gangliosides of various rat tissues: distribution of ganglio-N-tetraose-containing gangliosides and tissue-characteristic composition of gangliosides.J Biochem. 1984; 95: 761-770Crossref PubMed Scopus (54) Google Scholar, 20.Freischutz B. Saito M. Rahmann H. Yu R.K. Activities of five different sialyltransferases in fish and rat brains.J. Neurochem. 1994; 62: 1965-1973Crossref PubMed Scopus (0) Google Scholar, 21.Senn H.J. Manke C. Dieter P. Tran-Thi T.A. Fitzke E. Gerok W. Decker K. Ganglioside biosynthesis in rat liver: different distribution of ganglioside synthases in hepatocytes, Kupffer cells, and sinusoidal endothelial cells.Arch. Biochem. Biophys. 1990; 278: 161-167Crossref PubMed Scopus (0) Google Scholar, 22.Yu R.K. Nakatani Y. Yanagisawa M. The role of glycosphingolipid metabolism in the developing brain.J. Lipid Res. 2009; 50: S440-S445Abstract Full Text Full Text PDF PubMed Scopus (179) Google Scholar) (see below). In addition to CERT, several other proteins participate in GSL trafficking in the cells. GlcCer can be flipped into the Golgi lumen or across plasma membrane by the ATP-binding cassette transporter [also called multidrug resistance protein, MDR1, or P-glycoprotein (Pgp)]. Although this has been shown for short-chain GlcCer or neutral GlcCer, transport of naturally occurring GlcCer by Pgp has not been shown in vivo (23.Eckford P.D. Sharom F.J. The reconstituted P-glycoprotein multidrug transporter is a flippase for glucosylceramide and other simple glycosphingolipids.Biochem. J. 2005; 389: 517-526Crossref PubMed Scopus (120) Google Scholar, 24.De Rosa M.F. Sillence D. Ackerley C. Lingwood C. Role of multiple drug resistance protein 1 in neutral but not acidic glycosphingolipid biosynthesis.J. Biol. Chem. 2004; 279: 7867-7876Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar, 25.van Helvoort A. Smith A.J. Sprong H. Fritzsche I. Schinkel A.H. Borst P. van Meer G. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine.Cell. 1996; 87: 507-517Abstract Full Text Full Text PDF PubMed Scopus (737) Google Scholar). Four-phosphate adaptor protein 2 (FAPP2) can transport newly synthesized GlcCer to the trans Golgi and back to the ER (26.Halter D. Neumann S. van Dijk S.M. Wolthoorn J. de Maziere A.M. Vieira O.V. Mattjus P. Klumperman J. van Meer G. Sprong H. Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis.J. Cell Biol. 2007; 179: 101-115Crossref PubMed Scopus (214) Google Scholar). It is not clear how FAPP2 transports GlcCer through the cytosol to the plasma membrane (26.Halter D. Neumann S. van Dijk S.M. Wolthoorn J. de Maziere A.M. Vieira O.V. Mattjus P. Klumperman J. van Meer G. Sprong H. Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis.J. Cell Biol. 2007; 179: 101-115Crossref PubMed Scopus (214) Google Scholar, 27.D'Angelo G. Polishchuk E. Di Tullio G. Santoro M. Di Campli A. Godi A. West G. Bielawski J. Chuang C.C. van der Spoel A.C. et al.Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide.Nature. 2007; 449: 62-67Crossref PubMed Scopus (296) Google Scholar). Although glycolipid transfer protein has been shown to have binding affinity for GSLs, transport of GSLs by glycolipid transfer protein has not been reported (28.Brown R.E. Mattjus P. Glycolipid transfer proteins.Biochim. Biophys. Acta. 2007; 1771: 746-760Crossref PubMed Scopus (63) Google Scholar). The mechanisms of intracellular transport of GSLs continue to emerge. The catabolism of complex GSLs also proceeds by stepwise, sequential removal of sugars by lysosomal exohydrolases to the final common products, sphingosine and fatty acids (Fig. 1). Individual defects in GSL hydrolases (Fig. 3) result in excessive accumulation of specific GSLs in lysosomes leading to the various lysosomal storage diseases (LSDs) (see Table 1). Nonenzymatic proteins are essential to GSL degradation either by presenting lipid substrates to their cognate enzymes or by interacting with their specific enzyme (2.Kolter T. Sandhoff K. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids.Annu. Rev. Cell Dev. Biol. 2005; 21: 81-103Crossref PubMed Scopus (317) Google Scholar). Two genes, PSAP (prosaposin) and GM2A (GM2 activator protein), encode five such proteins (Fig. 3) (2.Kolter T. Sandhoff K. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids.Annu. Rev. Cell Dev. Biol. 2005; 21: 81-103Crossref PubMed Scopus (317) Google Scholar, 29.Rorman E.G. Grabowski G.A. Molecular cloning of a human co-beta-glucosidase cDNA: evidence that four sphingolipid hydrolase activator proteins are encoded by single genes in humans and rats.Genomics. 1989; 5: 486-492Crossref PubMed Scopus (0) Google Scholar). Four saposins (A, B, C, and D) or sphingolipid activator proteins (Sap) are derived from proteolytic cleavage of a single precursor protein, prosaposin, in the late endosome and lysosome (30.Hiraiwa M. Martin B.M. Kishimoto Y. Conner G.E. Tsuji S. O'Brien J.S. Lysosomal proteolysis of prosaposin, the precursor of saposins (sphingolipid activator proteins): its mechanism and inhibition by ganglioside.Arch. Biochem. Biophys. 1997; 341: 17-24Crossref PubMed Scopus (88) Google Scholar, 31.Leonova T. Qi X. Bencosme A. Ponce E. Sun Y. Grabowski G.A. Proteolytic processing patterns of prosaposin in insect and mammalian cells.J. Biol. Chem. 1996; 271: 17312-17320Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar). Each of these saposins has specificity for a particular GSL hydrolase (Table 1).TABLE 1Human and mouse disorders of GSL and ganglioside degradationDisease (Frequencies)Gene Symbol, Chr. Location,aMouse Genome Database at the Mouse Genome Informatics Web site, The Jackson Laboratory, Bar Harbor, ME. World Wide Web (URL: http://www.informatics.jax.org), January, 2010. Name(s)SpeciesGene DefectbDetailed mutation information for each disease can be found in the references.Major Storage MaterialsPhenotypeOnsetLifespanReferencesFarber disease (lipo granulomatosis) (rare)ASAH1 Chr 8: p22-p21.3 AC, N-acylsphingosine amidohydrolase 1; N-acylsphingosine deacylase, AC, ASAH1Human>17 Different mutations including point mutations and splice-site mutationsCeramide, hydroxyl ceramideGranulomas, lipid-laden macrophages in the CNS and viscera, mild or no neurological involvement, subcutaneous skin nodules near or over joints0 days – 1.7 year3 days–16 year(96.Moser H. Linke T. Fensom A.H. Levade T. Sandhoff K. Acid ceramidase deficiency: Farber lipogranulomatosis.in: Scriver C.R. Beaudet A.L. Sly W.S. Valle D. The Metabolic and Molecular Basis of Inherited Disease. McGraw-Hill, New York2001: 3573-3588Google Scholar, 108.Li C.M. Park J.H. He X. Levy B. Chen F. Arai K. Adler D.A. Disteche C.M. Koch J. Sandhoff K. et al.The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis, and expression.Genomics. 1999; 62: 223-231Crossref PubMed Scopus (92) Google Scholar, 321.Koch J. Gartner S. Li C.M. Quintern L.E. Bernardo K. Levran O. Schnabel D. Desnick R.J. Schuchman E.H. Sandhoff K. Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification of the first molecular lesion causing Farber disease.J. Biol. Chem. 1996; 271: 33110-33115Abstract Full Text Full Text PDF PubMed Scopus (200) Google Scholar, 322.Li C.M. Hong S.B. Kopal G. He X. Linke T. Hou W.S. Koch J. Gatt S. Sandhoff K. Schuchman E.H. Cloning and characterization of the full-length cDNA and genomic sequences encoding murine acid ceramidase.Genomics. 1998; 50: 267-274Crossref PubMed Scopus (89) Google Scholar, 323.Park J.H. Schuchman E.H. Acid ceramidase and human disease.Biochim. Biophys. Acta. 2006; 1758: 2133-2138Crossref PubMed Scopus (132) Google Scholar)Asah1 Chr 8: 42425551-42460127(-) Asah1−/−MouseThree copies of targeting constructs (PGK-neo cassette replacing exons 3 through 5) inserted into intron 12CeramideEmbryonic lethal2-cell stage (E0–E1) 100 mutations Single nucleotide deletions, missense mutationsSphingomyelin, Cholesterol, Bis (monoaclglycero)phosphate, GlcCer, LacCer Gb3, GM2, GM3Neurovisceral disease, hepatosplenomegaly, failure to thrive, rapid neurodegeneration, foamy cells in multiple organs3–6 months2–3 years(104.Schuchman E.H. Desnick R.J. Niemann-Pick Disease Types A and B: acid sphingomyelinase deficencies.in: Scriver C.R. Beaudet A.L. Sly W.S. Valle D. The Metabolic and Molecular Basis of Inherited Disease. McGraw-Hill, 2001: 3589-3610Google Scholar, 109.Schuchman E.H. The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease.J. Inherit. Metab. Dis. 2007; 30: 654-663Crossref PubMed Scopus (147) Google Scholar, 324.Simonaro C.M. Park J.H. Eliyahu E. Shtraizent N. McGovern M.M. Schuchman E.H. Imprinting at the SMPD1 locus: implications for acid sphingomyelinase-deficient Niemann-Pick disease.Am. J. Hum. Genet. 2006; 78: 865-870Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 325.Sogawa H. Horino K. Nakamura F. Kudoh T. Oyanagi K. Yamanouchi T. Minami R. Nakao T. Watanabe A. Matsuura Y. Chronic Niemann-Pick disease with sphingomyelinase deficiency in two brothers with mental retardation.Eur. J. Pediatr. 1978; 128: 235-240Crossref PubMed Scopus (0) Google Scholar)NPB (0.5 to 1/100,000)Same as NPAHumanA single mutation, a 3-base deletion (ΔR608)Sphingomyelin, Cholesterol, Bis(monoaclglyc ero)phosphate, GlcCer, LacCer, Gb3, GM2, GM3Visceral disease, minor neurological involvement, mental retardation, foamy cells in multiple organsEarly childhood to adulthodAdolescence to adulthood(104.Schuchman E.H. Desnick R.J. Niemann-Pick Disease Types A and B: acid sphingomyelinase deficencies.in: Scriver C.R. Beaudet A.L. Sly W.S. Valle D. The Metabolic and Molecular Basis of Inherited Disease. McGraw-Hill, 2001: 3589-3610Google Scholar, 109.Schuchman E.H. The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease.J. Inherit. Metab. Dis. 2007; 30: 654-663Crossref PubMed Scopus (147) Google Scholar, 325.Sogawa H. Horino K. Nakamura F. Kudoh T. Oyanagi K. Yamanouchi T. Minami R. Nakao T. Watanabe A. Matsuura Y. Chronic Niemann-Pick disease with sphingomyelinase deficiency in two brothers with mental retardation.Eur. J. Pediatr. 1978; 128: 235-240Crossref PubMed Scopus (0) Google Scholar)NPA/BSmpd1 Chr 7: 112702939-112706901(+) ASM−/−MouseInsertion of a neomycin resistance cassette into exon 3SphingomyelinHepatosplenomegaly, tremors, ataxia, impaired coordination, lethargic, poor feeding, hunched posture, progressive CNS disease, Purkinje cell loss Dysregulated Ca2+ homeostasis2–3 months4 months(106.Otterbach B. Stoffel W. Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann-Pick disease).Cell. 1995; 81: 1053-1061Abstract Full Text PDF PubMed Scopus (180) Google Scholar, 109.Schuchman E.H. The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease.J. Inherit. Metab. Dis. 2007; 30: 654-663Crossref PubMed Scopus (147) Google Scholar)Asm Asm−/−MouseInsertion of a neomycin resistance cassette into exon 2Sphingomyelin, CholesterolHepatosplenomegaly, mild tremors, ataxia, lethargic, poor feeding, hunched posture, progressive CNS disease, Purkinje cell loss, atrophy of brain, fertile2 months6–8 months(105.Horinouchi K. Erlich S. Perl D.P. Ferlinz K. Bisgaier C.L. Sandhoff K. Desnick R.J. Stewart C.L. Schuchman E.H. Acid sphingomyelinase deficient mice: a model of types A and B Niemann-Pick disease.Nat. Genet. 1995; 10: 288-293Crossref PubMed Google Scholar)NPC (1/120,000 to 1/150,000)NPC1 (95% cases) Chr18:q11-q12 NPC1HumanInfantile and "classic" (severe) phenotype: Premature stop codon mutations,missense mutations in the sterol-sensing domain (SSD), A1054T in the cysteine-rich luminal loop "Variant" (mild) phenotype: Missense mutations (I943M, V950M, G986S, G992R, P1007A) clustered within the cysteine-rich luminal loop between transmembrane domains 8 and 9Cholesterol, Sphingomyelin, GlcCer, LacCer and GM2Progressive Purkinje cell loss, ataxia, dystonia, dementia, variable hepa tosplenomegaly, sea blue histiocytes in bone marrow, liver, spleen, and lungIn utero to adult<6 months to adult(312.Davidson C.D. Ali N.F. Micsenyi M.C. Stephney G. Renault S. Dobrenis K. Ory D.S. Vanier M.T. Walkley S.U. Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression.PLoS One. 2009; 4: e6951Crossref PubMed Scopus (305) Google Scholar, 326.Patterson M.C. Vanier M.T. Suzuki K. Morris J.M. Carstea E. Neufeld E.B. Blanchette-Mackie J.E. Pentchev P.G. Niemann-Pick Disease Type C: A Lipid Trafficking Disorder.in: Scriver C.R. Beaudet A.L. Sly W.S. Valle D. The Metabolic and Molecular Basis of Inherited Disease. McGraw-Hill, New York2001: 3611-3633Google Scholar, 327.Tang Y. Li H. Liu J.P. Niemann-Pick Disease Type C: from molecule to clinic.Clin. Exp. Pharmacol. Physiol. 2010; 37: 132-140Crossref PubMed Scopus (0) Google Scholar, 328.Vanier M.T. Millat G. Niemann-Pick disease type C.Clin. Genet. 2003; 64: 269-281Crossref PubMed Scopus (446) Google Scholar, 329.Millat G. Chikh K. Naureckiene S. Sleat D.E. Fensom A.H. Higaki K. Elleder M. Lobel P. Vanier M.T. Niemann-Pick disease type C: spectrum of HE1 mutations and genotype/phenotype correlations in the NPC2 group.Am. J. Hum. Genet. 2001; 69: 1013-1021Abstract Full Text Full Text PDF PubMed Scopus (127) Google Scholar, 330.Naureckiene S. Sleat D.E. Lackland H. Fensom A. Vanier M.T. Wattiaux R. Jadot M. Lobel P. Identification of HE1 as the second gene of Niemann-Pick C disease.Science. 2000; 290: 2298-2301Crossref PubMed Scopus (646) Google Scholar)Npc1 Chr 18: 12348202-12394909(-)spm NPC1−/−MouseSpontaneous mutationCholesterol, GlcCer, LacCer and GM2Progressive Purkinje cell loss, demyelination, tremors, hind limb paralysis, poor fee ding, foamy macrophages in viscera, hepatosplenomegaly, enlarge lymph nodes, infertile7 weeks12–14 weeks(260.Higashi Y. Murayama S. Pentchev P.G. Suzuki K. Cerebellar degeneration in the Niemann-Pick type C mouse.Acta Neuropathol. 1993; 85: 175-184Crossref PubMed Scopus (178) Google Scholar, 326.Patterson M.C. Vanier M.T. Suzuki K. Morris J.M. Carstea E. Neufeld E.B. Blanchette-Mackie J.E. Pentchev P.G. Niemann-Pick Disease Type C: A Lipid Trafficking Disorder.in: Scriver C.R. Beaudet A.L. Sly W.S. Valle D. The Metabolic and Molecular Basis of Inherited Disease. McGraw-Hill, New York2001: 3611-3633Google Scholar, 331.Miyawaki S. Mitsuoka S. Sakiyama T. Kitagawa T. Sphingomyelinosis, a new mutation in the mouse: a model of Niemann-Pick disease in humans.J. Hered. 1982; 73: 257-263Crossref PubMed Scopus (78) Google Scholar)Npc1 Chr 18: 12348202- 12394909(-)nih NPC1−/−MouseSpontaneous mutation, transposon insertion deleting 11/13 transmembrane domainsCholesterol, Sphingomyelin, lyso(bis)phosphatidic acid, GlcCer, LacCer, GA2, GM2 and GM3Progressive Purkinje cell loss, demyelination, tremors, hind limb paralysis, poor feeding, foamy macrophages in viscera5–7 weeks11–14 weeks(218.Taniguchi M. Shinoda Y. Ninomiya H. Vanier M.T. Ohno K. Sites and temporal changes of gangliosides GM1/GM2 storage in the Niemann-Pick disease type C mouse brain.Brain Dev. 2001; 23: 414-421Abstract Full Text Full Text PDF PubMed Scopus (34) Google Scholar, 260.Higashi Y. Murayama S. Pentchev P.G. Suzuki K. Cerebellar degeneration in the Niemann-Pick type C mouse.Acta Neuropathol. 1993; 85: 175-184Crossref PubMed Scopus (178) Google Scholar, 326.Patterson M.C. Vanier M.T. Suzuki K. Morris J.M. Carstea E. Neufeld E.B. Blanchette-Mackie J.E. Pentchev P.G. Niemann-Pick Disease Type C: A Lipid Trafficking Disorder.in: Scriver C.R. Beaudet A.L. Sly W.S. Valle D. The Metabolic and Molecular Basis of Inherited Disease. McGraw-Hill, New York2001: 3611-3633Google Scholar, 332.Pentchev P.G. Boothe A.D. Kruth H.S. Weintroub H. Stivers J. Brady R.O. A genetic storage disorder in BALB/C mice with a metabolic block in esterification of exogenous cholesterol.J. Biol. Chem. 1984; 259: 5784-5791Abstract Full Text PDF PubMed Google Scholar, 333.Reid P.C. Sakashita N. Sugii S. Ohno-Iwashita Y. Shimada Y. Hickey W.F. Chang T.Y. A novel cholesterol stain reveals early neuronal cholesterol accumulation in the Niemann-Pick type C1 mouse brain.J. Lipid Res. 2004; 45: 582-591Abstract Full Text Full Text PDF PubMed Scopus (82) Google Scholar, 334.Treiber-Held S. Distl R. Meske V. Albert F. Ohm T.G. Spatial and temporal distribution of intracellular free cholesterol in brains of a Niemann-Pick type C mouse model showing hyperphosphorylated tau protein. Implications for Alzheimer's disease.J. Pathol. 2003; 200: 95-103Crossref PubMed Scopus (0) Google Scholar)NPC2/HE1 (5% cases) Chr 14: q24.3 HE1, NP-C2, NPC2, HE1/NPC2HumanSevere disease: 27delG leading to early termination of protein, a missense mutation (S67P),E20X, E118X, S67P, and E20X/27delG mutations Milder disease: splice mutation (VS2+5G→A) in the consensus sequence of the 5′ donor site of intron 2Cholesterol, Sphingomyelin, GlcCer, LacCer and GM2Same as NPC1In utero to adult<6 mos to adult(326.Patterson M.C. Vanier M.T. Suzuki K. Morris J.M. Carstea E. Neufeld E.B. Blanchette-Mackie J.E. Pentchev P.G. Niemann-Pick Disease Type C: A Lipid Trafficking Disorder.in: Scriver C.R. Beaudet A.L. Sly W.S. Valle D. The Metabolic and Molecular Basis of Inherited Disease. McGraw-Hill, New York2001: 3611-3633Google Scholar, 327.Tang Y. Li H. Liu J.P. Niemann-Pick Disease Type C: from molecule to clinic.Clin. Exp. Pharmacol. Physiol. 2010; 37: 132-140Crossref PubMed Scopus (0) Google Scholar, 328.Vanier M.T. Millat G. Niemann-Pick disease type C.Clin. Genet. 2003; 64: 269-281Crossref PubMed Scopus (446) Google Scholar, 329.Millat G. Chikh K. Naureckiene S. Sleat D.E. Fensom A.H. Higaki K. Elleder M. Lobel P. Vanier M.T. Niemann-Pick disease type C: spectrum of HE1 mutations and genotype/phenotype correlations in the NPC2 group.Am. J. Hum. Genet. 2001; 69: 1013-1021Abstract Full Text Full Text PDF PubMed Scopus (127) Google Scholar, 330.Naureckiene S. Sleat D.E. Lackland H. Fens

Referência(s)